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Abstract

Recent advances in learning techniques have garnered atten-
tion for their applicability to a diverse range of real-world se-
quential decision-making problems. Yet, many practical ap-
plications have critical constraints for operation in real en-
vironments. Most learning solutions often neglect the risk
of failing to meet these constraints, hindering their imple-
mentation in real-world contexts. In this paper, we propose a
risk-aware decision-making framework for contextual bandit
problems, accommodating constraints and continuous action
spaces. Our approach employs an actor multi-critic architec-
ture, with each critic characterizing the distribution of per-
formance and constraint metrics. Our framework is designed
to cater to various risk levels, effectively balancing constraint
satisfaction against performance. To demonstrate the effec-
tiveness of our approach, we first compare it against state-
of-the-art baseline methods in a synthetic environment, high-
lighting the impact of intrinsic environmental noise across
different risk configurations. Finally, we evaluate our frame-
work in a real-world use case involving a 5G mobile network
where only our approach consistently satisfies the system
constraint (a signal processing reliability target) with a small
performance toll (8.5% increase in power consumption).

Introduction
Recent progress in the domain of decision-making learn-
ing techniques has garnered considerable attention owing to
their extensive applicability in diverse real-world sequen-
tial decision-making problems (Silver et al. 2016; Brown
and Sandholm 2019; Meta Fundamental AI Research Diplo-
macy Team (FAIR) et al. 2022). Nevertheless, the practi-
cal deployment of these techniques necessitates careful con-
sideration of critical operational constraints inherent in real
environments. Regrettably, existing learning solutions often
overlook the risk associated with violating these constraints,
thereby impeding their viability in real-world scenarios.

Motivated by many real-world applications, we ad-
dress the contextual bandit (CB) problem with constraints,
which has been applied to many different problems in di-
verse fields, e.g., industrial control and temperature tuning
(Fiducioso et al. 2019), parameter optimization in robotics
(Berkenkamp et al. 2021), mobile networks optimization
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(Ayala-Romero et al. 2019), or video analytics optimization
(Galanopoulos et al. 2021). In this framework, one metric
needs to be maximized, while one or more other metrics
must be bounded at each time step (step-wise constraints).
In practice, performance metrics — whether utility or con-
straints — often possess random components. These can
arise from measurement errors or be intrinsic to the metric, a
phenomenon called aleatoric uncertainty. Such uncertainty
hinders constraint satisfaction, which is a crucial aspect in
most applications, further complicating the problem.

Previous works address the aforementioned constrained
contextual bandit problem considering long-term budget
constraints (Badanidiyuru et al. 2014; Agrawal et al. 2014),
which does not fit our setting where the constraints must
be satisfied at each step. Other works propose linear con-
textual bandits with safety constraints (Amani et al. 2019;
Kazerouni et al. 2017; Daulton et al. 2019). These solu-
tions aim to achieve at least a percentage of the performance
of a baseline policy. However, none of these works con-
sider aleatoric uncertainty, which is a key aspect to design
risk-aware decision-making algorithms. Berkenkamp et al.
(2021) propose a Bayesian optimization algorithm called
SafeOPT that handles noisy observation and constraints at
each step as we do. Although SafeOPT is data-efficient, it
presents important disadvantages over our solution concern-
ing its computational complexity and requirements on prior
knowledge, aspects that we discuss in detail later.

In this paper, we present a novel algorithmic framework
for risk-aware decision-making. In particular, we propose
an actor multi-critic architecture. We use different critics to
separately characterize the distribution of each of the met-
rics — both utility and constraints. We use these critics to
train a deterministic actor that enables our solution to op-
erate in continuous action spaces. Previous works adopt the
strategy of learning the mean value of the metric of interest
(Mnih et al. 2015; Fujimoto et al. 2018; Zhou et al. 2020a).
Other works consider a unique utility function capturing the
reward with a Lagrangian-like penalty term (Tessler et al.
2018; Solozabal et al. 2020). However, such strategies can
lead to constraint violations that depend on the aleatoric un-
certainty inherent in the metrics. In contrast, our approach
seeks to characterize the aleatoric uncertainty for each per-
formance metric, which allows us to modulate the risk level
in the decision-making process. To this end, we introduce a



parameter α that balances between risk and performance.
We evaluate our solution against the most relevant base-

lines in the literature across two distinct environments.
Firstly, in a synthetic environment where the performance
metrics are non-linear functions and the set of actions that
meets the constraints is highly dependent on the context.
Within this environment, we assess the impact of aleatoric
uncertainty on algorithmic performance. Secondly, we eval-
uate our framework in a real-world 5G mobile network ex-
perimental platform. The primary goal here is to minimize
energy consumption subject to specific system performance
requirements. In this setting, we experimentally character-
ize the aleatoric uncertainty inherent in the system metrics.
Our solution not only shows superior constraint satisfaction
but also exhibits the capability to modulate risk, effectively
balancing performance against constraint satisfaction.

Problem Formulation
We consider a contextual bandit formulation with con-
straints. At each time step t = 1, . . . , T the learner ob-
serves the context st ∈ S , where S is the context space
and then selects a d-dimensional continuous action at ∈ Rd.
Based on this, the learner observes the reward rt(st, at) and
M constraint metrics c

(m)
t (st, at), for m = 1, . . . ,M . All

the M + 1 observed metrics are intrinsically random, i.e.,
they can be written as c

(m)
t (st, at) = E[c

(m)
t (st, at)] + ζt,

where the noise ζt at time t is drawn from an unknown dis-
tribution with expectation E[ζt] = 0. The behavior of the
learner is defined by a policy that maps contexts into actions
π : S 7→ Rd. Our objective is to find the optimal policy:

argmax
π

T∑
t=1

rt(st, π(st)) (1)

s.t. c
(m)
t (st, π(st)) < c(m)

max , m = 1, . . . ,M

t = 1, . . . , T

where c
(m)
max is the maximum value for constraint m.

Note that, in contrast to the problem addressed in other
works on contextual bandits in the literature (Zhou et al.
2020a; Xu et al. 2022; Amani et al. 2019; Kazerouni et al.
2017), we consider a continuous action space, several per-
formance metrics, and stochastic constraints that should be
satisfied at each time step.

Proposed Method
We consider an actor-multi-critic architecture with a deter-
ministic actor to deal with the continuous action space (Lil-
licrap et al. 2015). In contrast to previous works, we con-
sider M +1 distributional critics denoted by Rm(s, a | ηm),
where ηm are the parameters of the critics. Note that the
critic with index m = 0 approximates the reward function
rt(st, at) and the critics with indexes m = 1, . . . ,M ap-
proximate constraint c(m)

t (st, at). We enable the critics to
approximate the distribution of their objective metric using
quantile regression.

Distributional Critics
Let FZ(z) be the cumulative distribution function (CDF) of
Z. Note that the quantile function is the inverse of the CDF.
Hence, for a given quantile τ ∈ [0, 1], the value of the quan-
tile function is defined as qτ = F−1

Z (τ). The quantile re-
gression loss is an asymmetric convex function that penal-
izes overestimation error with weight τ and underestimation
error with weight 1− τ :

Lτ (q̂τ ) := Ez∼Z [ρτ (z − q̂τ )] ,where (2)
ρτ (u) := u · (τ − δ{u<0}) ∀u ∈ R, (3)

where q̂τ is the estimation of the value of the quantile func-
tion, and δ{x} is an indicator function that takes the value
1 when the condition x is satisfied and 0 otherwise. Con-
sidering that each critic has N outputs that approximate the
set {qτ1 , . . . , qτN }, the critic can be trained to minimize the
following objective using stochastic gradient descent:

N∑
i=1

Lτi(q̂τi). (4)

Note that the quantile regression loss is not smooth when
u = 0, limiting the performance of non-linear function ap-
proximators such as NNs. To address this issue, we use the
quantile Huber loss (Huber 1992). This loss function has a
squared shape in an interval [−κ, κ], and reverts to the stan-
dard quantile loss outside of this interval:

Lκ(u) :=

{
1
2u

2 if |u| ≤ κ

κ(|u| − 1
2κ) otherwise.

(5)

Now, we derive an asymmetric variation of the Huber loss,

ρκτ (u) := |τ − δ{u<0}|
Lκ(u)

κ
. (6)

Finally, the quantile Huber loss can be obtained by intro-
ducing ρκτ (u) in eq (2). Note that when κ → 0 the quantile
Huber loss reverts to the quantile regression loss.

Risk-Aware Actor
In order to capture the information provided by all the crit-
ics, we define an aggregate reward signal:

Ragg(s, a, α | η) := (7)

R̄0(s, a | η0)−
M∑
i=1

λmax
(
γα(Ri(s, a | ηi))− c(i)max, 0

)
,

where γα(Z) is the value of the quantile function of distri-
bution Z at quantile α, λ is the penalty constant for the con-
straints, η = {η0, . . . , ηM} is the joint set of parameters of
the M+1 critics, and R̄m(·) indicates the mean of the distri-
bution provided by critic m. That is, the first term in eq. (7) is
the mean of the metric we want to maximize, while the sec-
ond term captures the penalty incurred when violating each
constraint. Note that, when γα(Ri(s, a | ηi)) < c

(i)
max, the

value inside the max() function is negative and the penalty
terms are zero.
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Figure 1: Risk aware decision-making framework compris-
ing a deterministic actor, M+1 distributional critics and the
aggregation function detailed in eq. (7). The propagation of
the gradient to train the actor is shown in green.

Importantly, in contrast to other works using similar
weighted penalties in the reward, the use of the quantile
function allows us to assure that the tail of the distribution
of the constraints (as α → 1) meets the restrictions, making
our solution more robust to constraint violations. Note that
eq. (7) can be adapted to cases where the constraints set a
minimum value by changing the sign to the term inside the
maximum operator and choosing a value of α close to zero.

We denote the deterministic actor policy as π(s | θ, α),
where θ is the set of actor parameters. Then, for a given value
of α, we define the actor’s objective as

J(π, α) : =

∫
S
β(s)Ragg(s, π(s | θ, α), α | η) ds (8)

= Es∼β [R
agg(s, π(s | θ, α), α | η)],

where β(s) is the stationary context distribution. Note that,
in a contextual bandit problem, the distribution of the con-
text is not conditioned by the policy.

The actor policy is updated by applying the chain rule to
the performance objective defined in eq. (8) with respect to
the actor parameters (Silver et al. 2014):

∇θJ(π, α) ≈ (9)

Es∼β

[
∇aR

agg(s, a, α | η) |a=π(s|θ,α) ∇θπ(s | θ, α)
]
.

Note that α is an input of the policy and the aggregated
reward (eq. 7). Thus, different values of α can modulate
the risk taken by the actor when selecting actions. Specif-
ically, with α → 1 we reduce the probability of violating
a constraint. However, this may also imply lower values of
reward rt due to more conservative actions, showing the
trade-off between performance and robustness. Moreover,
we can configure diverse values of α for each constraint
when the constraints have different risk aversion (e.g., some
constraints may be more critical than others). This is pos-
sible because we consider one critic per constraint that can
learn with a different value of α. Then, Ragg(·) is computed
based on the corresponding values of α from each critic.

Algorithm 1: RANCB training
Input: B, A, α, κ T
Initialize: D = ∅, N , θ, η

1: for t = 1, . . . , T do
2: Observe context st
3: Compute the action at = π(st, α | θ) +Nt

4: Observe performance metrics rt, c
(1)
t , . . . c

(M)
t

5: Store in D the experience ⟨st, at, c(0)t . . . c
(M)
t ⟩

6: Sample a random minibatch of B samples
⟨si, ai, c(0)i . . . c

(M)
i ⟩

7: for m = 0, . . . ,M do
8: Update the critic m by minimizing the loss

L = 1
B

∑
i

∑
τ∈T ρκτ (c

(m)
i − γτ (Rm(si, ai|ηm)))

9: end for
10: for all αj ∈ A do
11: Update the actor with the sampled policy gradient

1
B

∑
i∇aR

agg(si,a,αj |η)|a=π(si|θ,αj)∇θπ(si|θ,αj)
12: end for
13: end for

The proposed framework for risk-aware decision-making is
shown in Fig. 1.

Algorithm
We consider a reply buffer D, where the samples of experi-
ence ⟨s, a, c(0)(s, a), . . . , c(M)(s, a)⟩ are stored at each time
step (Mnih et al. 2015). To simplify the notation, the reward
r(s, a) is denoted by c(0)(s, a) in the reply buffer. The gra-
dients used for training are computed using mini-batches of
B experience samples randomly gathered from this buffer.

Let α be the default risk value. In most of the applications,
a risk-averse policy is desirable, i.e., α → 1. In other cases,
we may want to modulate the level of risk to find a differ-
ent balance between performance and robustness. We define
A as the set of risk values to be used by the algorithm. We
define T as the set of quantiles approximated by all the crit-
ics, where A ⊆ T . For any given minibatch of experience
samples, Ragg can be computed for different values of risk
α (see eq. (7)). Thus, the actor can learn the policy as a func-
tion of the risk without collecting extra data. Since the actor
policy π is deterministic, we add some noise denoted by N
to the actions to enable exploration during training. Algo-
rithm 1 shows the pseudo-code of our framework, referred
to as Risk-Aware Neural Contextual Bandit (RANCB).

Benchmark Algorithms
We first present a set of benchmarks that are variations of our
proposal and are inspired by ideas from the literature. In this
way, we can conduct an ablation study to evaluate the impact
of its different components, i.e., distributional critics and
multiple critics. Then, we present SafeOPT (Berkenkamp
et al. 2021), the most closely related work to ours. SafeOPT
relies on GPs to learn the objective and the constraint func-
tions while handling the intrinsic noise of the observations.
To the best of our knowledge, there are no other works in the
literature addressing this problem.



Baselines
• Neural Contextual Bandit (NCB) is inspired by the

actor-critic NN architecture presented by Lillicrap et al.
(2015). However, some modifications need to be intro-
duced to adapt this solution to our problem. As NCB only
encompasses one critic, we need to define a utility func-
tion that captures the constrained problem:

ut(st, at) := (10)

rt(st, at)−
M∑
i=1

λmax
(
c
(m)
t (st, at)− c(i)max, 0

)
.

In contrast to the original algorithm (Lillicrap et al. 2015)
where future values of reward are also taken into account,
the NCB critic approximates the expectation of ut. For
that purpose, we use the MSE loss function:

L(η) := Es∼β,a∼π′

[
(R(s, a|η)− u(s, a))

2
]

(11)

where R(s, a|η) denotes the critic and π′ any policy that
can potentially deviate from the actor’s behavior. The ac-
tor is updated as indicated by Lillicrap et al. (2015).

• Single-Critic Distributional NCB (SC-DNCB) extends
NCB with a distributional critic to characterize the dis-
tribution of ut. The critic is trained using the Huber loss
in eq. (6) and the actor uses the policy gradient equation
proposed by Lillicrap et al. (2015) with respect to the ex-
pectation of the distribution provided by the critic. Note
that, as the reward and all the constraints are character-
ized by a single utility function, the level of risk toler-
ance in the decision-making process cannot be config-
ured. However, it has been widely reported in the litera-
ture that the use of distributional critics increases the per-
formance of the algorithms even when the critic is only
used to compute the expected value of the distribution
(Bellemare et al. 2017; Dabney et al. 2018b).

• Multi-Critic NCB (MC-NCB) extends NCB by includ-
ing M+1 non-distributional critics, one per performance
metric. Each critic approximates the expectation of its
corresponding metric using the MSE loss. To update the
actor, an aggregated reward signal is computed based on
the output of all the critics, similarly to eq. (7). Then, the
actor gradients are computed using eq. (9).

All these baseline solutions use the same exploration ap-
proach used by RANCB in the training phase. Note that none
of these baselines allow us to configure the level of risk dur-
ing the decision-making process as RANCB does.

Bayesian Optimization with Constraints
Finally, we also use SafeOPT as a benchmark (Berkenkamp
et al. 2021), which is a Bayesian online learning algorithm
that handles constraints and noisy observations. SafeOPT
comprises M + 1 GPs that characterize each one of the
performance and constraint metrics. We implement the con-
textual version of SafeOPT and follow the implementation
provided in Sec. 4.3 of that paper, where the confidence in-
tervals of the GPs are used to compute the safe set of ac-
tions (actions that satisfy the constraint for a given context).

The confidence is determined by a scalar β (see eq. (10) in
(Berkenkamp et al. 2021)). We consider this practical ver-
sion of the algorithm because we assume that, in general,
the Lipschitz continuity properties of the performance and
constraint functions are unknown.

We configure SafeOPT with a combination of the
anisotropic version of the Matér kernel with ν = 3

2 and a
white kernel to model the noise (Duvenaud 2014). We use
UCB as an acquisition function since it optimizes the re-
ward and expands the safe set of actions at the same time.
We found that this strategy provides higher performance
compared to the exploration strategy proposed originally by
SafeOPT, which expands the safe set explicitly. We also note
that this issue has been reported in other previous works
(Fiducioso et al. 2019; Ayala-Romero et al. 2021).

During the execution of SafeOPT, it may happen that none
of the actions satisfies the conditions to be in the safe set,
e.g., due to a large value of β or high noise in the obser-
vations. The original algorithm does not consider that this
event may happen in practice. To address this issue, we mod-
ified SafeOPT to select the action that minimizes the estima-
tion of the accumulated constraint violation (across all the
constraints) when the safe set is empty.

Evaluation
We evaluate all the aforementioned algorithms in two set-
tings: (i) using a synthetic environment with non-linear
functions and variable noise in the observations, and (ii) in a
real-world resource allocation problem in wireless networks
implemented on a real system. The source code of our solu-
tion and all the baselines is available online1.

In our evaluation, we configure all actor and critic NNs
with two hidden layers of 256 units. The critics that approx-
imate the reward function learn the set of quantiles T =
{i/N | i = 1, . . . , N}, where N = 21. For the critics that
approximate constraints, we consider two different configu-
rations depending on whether the constraint sets a maximum
value (synthetic environment) or a minimum value (resource
allocation problem in wireless networks). For the former, we
use T max = {0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.99, 0.995, 0.999}
and αmax = 0.995; and for the latter T min = {1 − τ | τ ∈
T max} and αmin = 0.005. We used Adam to learn the NN
parameters with a learning rate of 10−4 and 10−3 for the
actor and critics, respectively. For the exploration noise N ,
we use an Ornstein-Uhlenbeck process with the parameters
θnoise = 0.15 and σnoise = 0.15 to generate temporally cor-
related perturbations to the selected action (Lillicrap et al.
2015). We use a reply buffer D with a memory of 2000
samples. Finally, we configure κ = 1, a minibatch size of
B = 64 samples, and λ = 2.5 (see the Appendix for a de-
tailed evaluation).

For all the results shown in this section, we consider 10
independent runs. The figures with shadowed area show the
average and the 15th and 85th percentiles. The figures with
error bars show the mean values and the confidence intervals
with a confidence level of 0.95.

1https://github.com/jaayala/risk aware contextual bandit
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Figure 2: Representation of the synthetic environment de-
fined in eq. (12) for a fixed context s = (0.7, 0.7, 0.7) and
σenv = 0.15. We depict the 84.1th, 97.7th, and 99.9th quan-
tiles of the functions with different transparency levels and
their corresponding sets of feasible actions. The markers
show the optimal values of the unconstrained (grey) and con-
strained (black) problems.

Synthetic Environment
In the first set of experiments, we consider a synthetic envi-
ronment with 3-dimensional contexts and a one-dimensional
action space (d = 1). The reward and the constraints are
given by the following quadratic functions:

rt(st, at) = s
(0)
t · a2t + s

(1)
t · at + ξ

(0)
t (12)

c
(1)
t (st, at) = s

(0)
t · a2t − s

(1)
t · at + ξ

(1)
t ,

c
(2)
t (st, at) = s

(0)
t · (at − s

(2)
t )2 − s

(1)
t · (at − s

(2)
t ) + ξ

(2)
t ,

where ξ
(i)
t ∼ N(0, σ2

env) for i = 0, 1, 2. In our experiments,
the contexts are generated as i.i.d. uniform random variables
in [0, 1]3. We set the constraint bounds as c(0)max = c

(1)
max = 0.3.

Fig. 2 shows an example of the functions in eq. (12) for
a fixed context s = (0.7, 0.7, 0.7) and σenv = 0.15. In this
example, the lower value of the feasible action set is outlined
by c

(2)
t and the higher value is delimited by c

(1)
t . Note that

the location and shape of all of these functions are highly
dependent on the context s.

We plot with different transparencies the 84.1th, 97.7th,
and 99.9th quantiles of the functions in eq. (12). We also
plot the feasible sets of actions obtained when considering
that each of those quantiles needs to satisfy the constraint.
Note that when considering higher quantiles, the safe set
becomes smaller but safer, i.e., the probability of satisfying
the constraints is higher and vice versa. The optimal values
of the reward r for each feasible set of actions are marked
with a black star, and we use a grey star for the optimal
unconstrained value. Note that the riskier the set of feasi-
ble actions, the higher the performance of the optimal action
within the set, i.e., we get closer to the grey star.

In other words, a higher reward implies a higher proba-
bility of violating the constraint. Therefore, if we want to
satisfy the constraint with high probability, we need to be

more conservative in decision-making, which has a cost in
terms of reward. This trade-off also depends on the variance
of the noise of the performance metrics, modeled by σ2

env.
Fig. 3 compares the performance of all the solutions dur-

ing training. The right plot shows the instantaneous reward
(−rt(st, at)), and the left plot shows the accumulated con-
straint violation defined as follows:

Γt :=

M∑
m=1

t∑
t′=0

max
{
c
(m)
t′ − c(i)max, 0

}
. (13)

We observe that RANCB with α = 0.995 not only pro-
vides the minimum values of Γt but also the slope of Γt

tends to zero. This means that the constraint violation af-
ter convergence is very small in this setting. Obviously, this
outstanding reliability performance comes at a cost in terms
of reward as depicted in the right plot. Conversely, RANCB
with α = 0.5 provides the highest reward but pays the price
of higher accumulated constraint violations. This result il-
lustrates how RANCB can adapt to any application reliabil-
ity target by setting α appropriately. The rest of the bench-
marks are unable to adjust the level of risk and, therefore,
they converge to intermediate solutions.

Note that Fig. 3 does not include SafeOPT. The reason
is that it is not feasible to provide a fair comparison of the
training performance between SafeOPT and the rest of the
algorithms due to some fundamental differences. On the one
hand, differently than our approach, SafeOPT needs some
previous knowledge before starting the training phase. First,
SafeOPT needs a dataset to optimize the hyperparameters
of the kernels. As the kernels encode the smoothness of the
metric function, this step is critical. A suboptimal hyperpa-
rameter optimization (e.g., due to a poor dataset) may have
serious consequences on training performance. In this par-
ticular example, there are 5 hyperparameters to optimize for
each GP, i.e., 4 dimensions (3-dimensional contexts and 1-
dimensional action) plus the noise level. In our evaluations,
we optimized the kernels using 1000 samples obtained ran-
domly from the environment. Second, we need to define an
initial safe set of actions, which will be used at the begin-
ning of the training phase. This step requires some domain
knowledge and can be very challenging as the safe set of ac-
tions can be highly dependent on the context. We found that,
if the actions in the initial safe set violate the constraint, the
algorithm does not converge. To avoid this, we use eq. (12)
in the first iterations of the training phase to compute an ini-
tial safe set of actions. Note that this gives SafeOPT some
advantage over the other benchmarks, hindering a fair com-
parison. Moreover, this strategy to generate the initial safe
set is not realistic in a real-world application.

On the other hand, GP-based learning algorithms are
known to be more data efficient than NN-based algorithms,
that is, they need fewer data samples to converge. How-
ever, the computational complexity of GP-based solutions
is O(n3) with the sample size (Williams and Rasmussen
2006). To illustrate this, Fig. 4 shows the execution times of
SafeOPT and RANCB in an Intel i7-11700 @ 2.5GHz with
15Gb of RAM. The execution time of SafeOPT increases ex-
ponentially with the sample size, while the inference time of
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Figure 3: Evaluation of training phase in synthetic environ-
ment with σenv = 0.2. Accumulated constraint violation Γt

(left); instantaneous reward −rt(st, at) (right).

RANCB is 0.106±5 ·10−4 ms2. Additionally, we measured
that the execution time for the hyperparameter optimization
of SafeOPT is 160.7± 15.1 seconds for each GP. Therefore,
GP-based solutions can be unfeasible in scenarios where the
computational capacity is limited or the decisions need to be
made synchronously or in a timely manner (as in the wire-
less network example that we show later).

Let us now compare the performance of all the bench-
marks during the inference operation (after the training
phase). Fig. 5 shows the average constraint violation as a
function of σenv. Note that, with larger values of σenv, there
are contexts for which the penalty term in eq. (7) is not zero
for any action, i.e., the constraint violation is inevitable due
to the high variance. Hence, we observe a general increase
of the constraint violation with σenv. In such cases, the al-
gorithms need to select the action that minimizes the cost
due to constraint violation. In all the cases, RANCB with
α = 0.995 obtains the minimum constraint violation. More-
over, we found that optimal values of the hyperparameter β
of SafeOPT are highly dependent on σenv. We evaluated sev-
eral values of β and selected for each σenv the one attaining
the lowest constraint violation, β = {90, 15, 10, 3.5, 2} for
each value in the x-axis of Fig. 5, respectively.

Finally, Fig. 6 shows the impact of α on the inference
performance of RANCB for different values of σenv. As ex-
pected, when α increases, the constraint violations decrease
(left plot). We also observe that lower values of α are associ-
ated with higher reward (right plot), which shows again the
trade-off between constraint satisfaction and performance.

Resource Assignment in Mobile Networks
For every Transmission Time Interval (TTI) of 1 ms or
lower, wireless processors such as those in 5G must process
signals that encode data, known as Transport Blocks (TB),
within hard time deadlines. Failing to meet such deadlines
may result in TB data loss (Foukas et al. 2021). To provide
industry-grade reliability, today’s wireless processors use
hardware accelerators (HAs) that can swiftly process these
signals. However, it is well-known that HAs are energy-
hungry, and energy consumption is nowadays a major con-

2Similar times are observed when using a GPU NVIDIA A100-
SXM4-80GB. Due to the small size of the NNs, there is no notice-
able gain in execution time when using a GPU.

Figure 4: Evaluation of ex-
ecution time in a Intel i7-
11700 @ 2.5GHz and 15Gb
or RAM.
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Figure 6: Impact α on the execution performance of
RANCB. Average constraint violation per step (left) and av-
erage reward (right).

cern for mobile operators (GSMA Association 2020; China
Mobile Limited 2021). Alternatively, software processors,
which use inexpensive CPUs, are more energy-efficient but
are slower than HAs, potentially risking deadline violations.

Importantly, the processing time of these signals (in a
software processor or an HA) is difficult to predict as it de-
pends on several and potentially unknown variables, i.e., the
TB size, and the signal quality, among others (Foukas et al.
2021). Thus, we face a resource assignment problem where
we need to decide between energy-efficient CPUs or high-
performing HAs to process incoming signals with uncertain
processing times. In this context, an overuse of CPUs to save
energy may cause that many TBs are not processed within
their deadlines leading to data loss, which has serious im-
plications for the mobile operator. In other words, there is
a trade-off between processing constraints (deadlines when
processing signals) and energy consumption.

Current Open RAN (O-RAN) systems support third-
party applications for resource control at 100 millisecond
timescales (Garcia-Saavedra et al. 2021). This timescale
brings an additional challenge since the decisions cannot be
made per TB but with a coarser time granularity. As shown
in Fig. 7, our algorithm makes resource allocation decisions
every 100 ms, which are implemented as rules that are then
applied to each TB in real-time in the computing platform.

We hence formulate this problem as the following con-
strained contextual bandit. We define st as the traffic char-
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Figure 7: Simplified scheme of the resource assignment
problem in mobile networks.
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Figure 8: Empirical probability density function of the E(·)
and ζ(·) for a fixed a = 0.6 and stationary traffic load.

acterization at time t (context). The offloading decision is
denoted by at ∈ [0, 1]. The energy consumption of the sys-
tem (in Joules) for a given context and action is denoted by
Et(st, at). The ratio of TBs that have been processed within
their deadline (reliability) is denoted by ζt(st, at) ∈ [0, 1].
We formulate the problem as follows:

min
{at}T

t=1

lim
T→∞

1

T

T∑
t=1

Et(st, at) (14)

s.t. lim
T→∞

1

T

T∑
t=1

ζt(st, at) ≥ 1− ϵ.

where ϵ sets the target reliability. More details about the for-
mulation are provided in the Appendix. We would like to
highlight that both Et(·) and ζt(·) are very complex func-
tions whose closed-form expressions are unavailable. They
characterize the high complexity of the system (i.e., the
number of users and their mobility patterns, signal quality,
app data generation, etc.) during a period of 100 ms and also
depend on the specific hardware of the system. For these
reasons, they need to be learned from observations.

Using our experimental platform detailed in the Appendix
(Salvat et al. 2023), we characterized experimentally the dis-
tribution of the energy (E(·)) and the system’s reliability
(ζ(·)) using a fixed offloading decision a = 0.6. Fig. 8 shows
that these metrics are random in nature. In particular, if we
only considered the average value of the reliability to satisfy
the constraint, the reliability would be below its minimum
required value with a probability of 0.35 for the distribution
in Fig. 8. Our proposal aims at minimizing this risk.

The risk level (i.e., the tolerance to constraint violation) is
determined by the specific application scenario. Khan et al.
discuss different risk levels (reliability targets) for different
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Figure 9: Performance evaluation in our wireless network
experimental platform. Average constraint violation per step
(left) and average power consumption in watts (right).

scenarios (e.g., broadband communication services in cities
vs. industry communication in factories). Moreover, net-
work operators may want to reduce reliability in exchange
for lower costs (energy consumption in this example) in
some situations. For that reason, we evaluate various risk
levels, showing our framework’s flexibility to meet different
application demands, balancing between risk and cost.

We consider 1500 iterations for training and 500 iterations
for inference. Note that SafeOPT cannot be evaluated in this
use case because, as shown in Fig 4, its inference time ex-
ceeds the system requirements (100 ms). Fig. 9 depicts the
mean system unreliability, i.e., 1

T

∑T
t=1 ζt(st, at)− (1− ϵ)

(left) and the mean power consumption (right) in inference
across all the solutions under study for various reliability tar-
gets ϵ. Notably, RANCB consistently outperforms its bench-
marks in terms of reliability, providing near-zero unreliabil-
ity. Importantly, RANCB’s superior reliability comes at a
low price in terms of power consumption, just 8.5% higher
than that of MC-NCB on average.

Related Work
There is a significant body of literature available on con-
textual bandit algorithms. Some works assume a structure
in the reward function, e.g., a linear relationship between
the contexts and the reward (Li et al. 2010; Abbasi-Yadkori
et al. 2011; Abeille et al. 2017). Other works use neural net-
works (NN) to learn non-linear reward functions. For ex-
ample, some use an NN to learn the embeddings of the ac-
tions and then apply Thompson Sampling on the last layer of
the NN for exploration (Riquelme et al. 2018). Others pro-
pose an NN-based algorithm with a UCB exploration (Zhou
et al. 2020b). Ban et al. (2022) propose novel exploration
strategies based on neural networks. However, none of these
works consider constraints in the problem formulation.

Other studies consider contextual bandits with budget
constraints (bandits with knapsack) (Badanidiyuru et al.
2014; Agrawal et al. 2014). However, the constraints in both
of these papers are cumulative resources (budget) and deter-
ministic, in contrast to the constraints in our problem that
are stepwise and stochastic. Others consider the linear con-
textual bandit problem with safety constraints (Amani et al.
2019; Kazerouni et al. 2017; Daulton et al. 2019). The goal
of these works is to obtain at least a percentage of the per-



formance of a baseline policy. Nevertheless, they do not con-
sider the intrinsic random noise of the performance metrics
and learn their mean value. Moreover, some of these (Amani
et al. 2019; Kazerouni et al. 2017) assume a structure in the
reward function (linear), limiting their applicability to envi-
ronments with non-linearities.

The most closely related work to ours (Berkenkamp et al.
2021) proposes a Bayesian optimization algorithm called
SafeOPT that, like in this work, handles constraints and
noisy observations. This work generalizes the proposal of
Sui et al. by considering multiple constraints and contexts. In
contrast to our approach, SafeOPT relies on Gaussian Pro-
cesses (GPs) that are used to learn the objective and con-
straint functions. The GPs model the noise and the uncer-
tainty in the estimation, which allows SafeOPT to compute
a safe set of actions for each context. Besides, the use of GPs
makes the algorithm very data-efficient.

However, SafeOpt has important drawbacks. First, the use
of GPs is computationally expensive. Specifically, the com-
plexity scales as O(n3) with the number of data samples
(Williams and Rasmussen 2006). This hinders its applica-
tion to settings requiring a large amount of data (e.g., en-
vironments with high dimensionality) and their deployment
in computationally constrained platforms. Second, SafeOPT
requires an initial set of actions that satisfy the constraints at
the beginning of the training phase. As this set of actions can
be highly dependent on the context, its computation can be
very challenging, requiring some domain knowledge of the
specific application, which limits the applicability of this so-
lution. SafeOPT is objectively evaluated in comparison with
our approach in the evaluation section.

Finally, in the Reinforcement Learning (RL) arena, there
exist some works that do characterize the distribution of the
value/Q function instead of its mean value (Bellemare et al.
2017; Dabney et al. 2018b,a; Nguyen et al. 2020). These ap-
proaches bring performance improvements even when only
the mean of the distribution is used in the learning process.
Moreover, some other works propose a distributional ap-
proach to optimize value-at-risk metrics in RL (Tang, Zhang,
and Salakhutdinov 2020). However, to the best of our knowl-
edge, these ideas have not been applied yet in the contextual
bandit setting nor have they been used to design risk-aware
decision-making algorithms in constrained environments.

Conclusions

This paper proposed a risk-aware decision-making frame-
work for constrained contextual bandit problems. The so-
lution relies on an actor-multi-critic architecture, where the
multiple critics characterize the distributions of the perfor-
mance and constraint metrics, and a deterministic actor en-
ables continuous control. Our solution can adapt to differ-
ent levels of risk to address the trade-off between constraint
satisfaction and performance. We evaluated our solution in
a synthetic environment and a real-world mobile network
testbed, showing its effectiveness.
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Appendix
Evaluation of the hyperparameter λ

We study the impact of λ from eq. (7) on the performance of
RANCB. This parameter weights the penalty incurred when
a constraint is violated. We evaluate different values of λ in
the synthetic environment from eq. (12).

Fig. 10 shows the average constraints violation and the
average reward for different values of λ. We consider the
same parameters as in the evaluation section of the paper
and σenv = 0.2. We observe that for values of λ greater
than 2.5, there is no improvement in the constraint viola-
tion. Conversely, the reward decreases for larger values of λ
as the resolution of Ragg(·) worsens. We observe that this
result is consistent across different scenarios due to the nor-
malization of the reward and cost functions. Thus, we use
λ = 2.5 for all the evaluations in this work.

Evaluation of Dimensionality
In this appendix, we evaluate the impact of the dimensional-
ity of the contexts and actions on the learning performance.
For that purpose, we define a new environment as follows:

rt(st, at) =

D∑
i=1

s
(i)
t · (a(i)t )i

ct(st, at) =

D∑
i=1

(−1)i · s(i)t · (a(i)t )i,

where D indicates the dimensionality of both the context
st and the continuous action vector at. Note that both the
reward and constraint functions are polynomials of degree
D. We evaluate D = {2, . . . , 25} considering the parameter
configuration described in the evaluation section of the paper
and σenv = 0.2.

Fig. 11 shows that the gains of our proposal in terms of
constraint satisfaction during the training phase further in-
crease with higher dimensionality compared to Fig. 3. Note
that, as expected, more training steps are needed to reach
convergence with higher dimensionality.

Resource Assignment in Mobile Networks
In this appendix, we detail the computing resource assign-
ment problem in mobile networks addressed in this work.

The Transmission Time Interval (TTI) is the time interval,
typically 1 ms or lower, that a base station (BS) has to sched-
ule wireless transmissions encoding data, known as Trans-
port Blocks (TB). We index each TTI with k = 1, 2, . . ..
Every TTI k, the BS receives from its users a set of encoded
TBs denoted by Bk that must be decoded by a processing
unit p ∈ {CPU,HA}. Every TB bi ∈ Bb

k is characterized
by its signal-to-noise power relationship (bci ), the modula-
tion and coding scheme (bmi ), and the amount of data bits it
carries (bli). We let Ebi(b

c
i , b

m
i , bli, p) denote the energy con-

sumed by a processing unit p to decode a TB. Similarly, we
define the TB processing time as Pbi(b

c
i , b

m
i , bli, p).

In our experiments, we observed that, for a given TB and
processing unit, both the energy and the processing time are
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Figure 10: Average constraints violation and the average reward
for different values of λ in the synthetic environment.
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Figure 11: Accumulated constraint violation during training phase
for different dimensionalities of the contexts and action.

non-deterministic. When a TB bi arrives at a processing unit
p to be decoded, if the processing unit is already busy, bi
is stored in a FIFO queue until p becomes empty. Follow-
ing the specification of the relevant standardization bodies,
every TB that spends more than a time Pmax in the system
without being decoded is discarded, incurring data loss. A
TB can be discarded while waiting in the FIFO queue or
while being processed. In the latter case, in addition to the
data loss, there is an additional energy waste associated with
the processing of outdated data.

As mentioned in the paper, in novel Open RAN systems,
control decisions may be taken by third-party applications at
near-real-time decision periods of ∼100 ms. We denote by
Bt = {Bk | k ∈ Kt} the set of TBs generated during a deci-
sion period t, where Kt indicates the set of TTIs belonging
to t. Then, the energy Et(·) and reliability ζt(·) defined in
eq. (14) are computed based on all the TBs in Bt with vary-
ing parameters (bci , bmi , and bli), and considering that some
of them are queued, discarded, etc. The complexity of this
system makes predicting energy consumption and reliability
performance very difficult.

The state st in eq. (14) shall characterize the traffic pat-
terns within a period t in terms of the TBs generated by
the users. Particularly, we define st = Φ(Bt, D) as the 3-
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Figure 12: Open RAN (O-RAN) Cloud server for 5G BSs.

dimensional histogram of the TB’s features (signal quality,
modulation, and coding scheme, and TB size), where D is
the number of bins of this histogram in each dimension. In
our experiments, we use D = 5 bins.

Finally, the offloading strategy used in eq. (14) is denoted
by at ∈ [0, 1]. A straightforward approach is that at indi-
cates the portion of traffic (in terms of the number of TB)
assigned to each processing unit. However, based on the in-
sights from our experiments, we devised a better alternative.
We observed that GPUs can process larger TBs much faster
than CPUs; in fact, CPUs are unable to process some large
TBs within their deadline. We also observed in our experi-
ments that CPUs consume less energy than the GPU to pro-
cess TBs. Motivated by these observations, we define at as
the normalized bit threshold. Thus, when bli is larger than
the bit threshold, bi is processed in the HA and otherwise
processed in the CPU.

Open RAN experimental platform
Our experimental platform, depicted in Fig. 12, complies
with the technical specification of the novel Open RAN (O-
RAN) standards for 5G base stations (Garcia-Saavedra et al.
2021). More specifically, our platform comprises a general-
purpose server with an Intel Xeon Gold 6240R CPU with 16
cores dedicated to signal processing tasks (CPU processing
unit) and an NVIDIA GPU V100 used as a hardware accel-
erator (HA processing unit). Within the O-Cloud, an Accel-
eration Abstraction Layer (AAL) (O-RAN Alliance 2022)
interfaces between the BS software and processing units for
signal processing (CPU or HA). The AAL provides a Log-
ical Processing Unit (LPU), a driver to manage computing
resources for signal processing, for each processing unit. To
this end, we used Intel DPDK BBDev3, a software library
from Intel (FlexRAN (Intel 2019)) to implement the CPU
LPU, and proprietary driver to implement the GPU LPU.

We emulate 5G signals by using real traces collected from
real BSs in Madrid, Spain, during May 2023 using an open-
source tool called Falcon (Falkenberg and Wietfeld 2019).
In these traces, we collect information related to the amount
of data sent by each user, their signal quality, etc. We do
not collect personal information nor actual user data since,

3https://doc.dpdk.org/guides/prog guide/bbdev.html
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Figure 13: Training phase resource assignment problem in mo-
bile networks accumulated constraint violation (first column) and
power consumption (second column) for different reliability targets
ϵ (rows).

per standard, it is encrypted. We then emulate realistic pat-
terns of 5G signals by encoding and modulating TBs with
the same characteristics of size, signal quality, etc. as in our
traces. The resulting TBs are sent to the BS as shown in
Fig. 7. We emulate 6 concurrent users connected to the BS.



RANCB and the benchmarks run as applications within
O-RAN’s Near-Real Time Radio access network Intelligent
Controller (Near-RT RIC), which controls the behavior of
BSs in timescales of ∼100 ms. In our case, the Near-RT
RIC is deployed in a general-purpose server with an Intel i7-
11700 @ 2.5GHz and 15Gb or RAM. On the one hand, an
LPU broker implements the aforementioned threshold rule.
Upon the arrival of each TB, the LPU broker directs the TB
to the corresponding LPU according to such threshold and
reports back performance metrics to the Near-RT RIC. On
the other hand, the BS provides context information to the
Near-RT RIC through an O-RAN interface called O2.

Learning curves mobile networks
This appendix provides the training phase results of the use
case of resource assignment in mobile networks. Fig. 13
shows the evolution of the accumulated constraint violation
in the first column and the evolution of power consumption
in the second one. Each row in Fig. 13 shows a reliability tar-
get ϵ corresponding to all the points in the x-axis of Fig. 9.
In all the cases our proposal incurs the minimum constraint
violation and pays a cost in terms of power, which illustrates
the trade-off between reliability and energy consumption.


