
On Class Distributions Induced by Nearest Neighbor
Graphs for Node Classification of Tabular Data

Federico Errica
NEC Laboratories Europe

Heidelberg, Germany

Abstract

Researchers have used nearest neighbor graphs to transform classical machine
learning problems on tabular data into node classification tasks to solve with
graph representation learning methods. Such artificial structures often reflect the
homophily assumption, believed to be a key factor in the performances of deep
graph networks. In light of recent results demystifying these beliefs, we introduce
a theoretical framework to understand the benefits of Nearest Neighbor (NN)
graphs when a graph structure is missing. We formally analyze the Cross-Class
Neighborhood Similarity (CCNS), used to empirically evaluate the usefulness of
structures, in the context of nearest neighbor graphs. Moreover, we study the class
separability induced by deep graph networks on a k-NN graph. Motivated by
the theory, our quantitative experiments demonstrate that, under full supervision,
employing a k-NN graph offers no benefits compared to a structure-agnostic
baseline. Qualitative analyses suggest that our framework is good at estimating
the CCNS and hint at k-NN graphs never being useful for such classification
tasks under full supervision, thus advocating for the study of alternative graph
construction techniques in combination with deep graph networks.

1 Introduction

The pursuit of understanding real-world phenomena has often led researchers to model the system
of interest as a set of interdependent constituents, which influence each other in complex ways.
In disciplines such as chemistry, physics, and network science, graphs are a convenient and well-
studied mathematical object to represent such interacting entities and their attributes. In machine
learning, the term “graph representation learning” refers to methods that can automatically leverage
graph-structured data to solve tasks such as entity (or node), link, and whole-graph predictions
[12, 32, 78, 73, 4].

Most of these methods assume that the relational information, that is the connections between
entities, naturally emerges from the domain of the problem and is thus known. There is also broad
consensus that connected entities typically share characteristics, behavioral patterns, or affiliation,
something known as the homophily assumption [45]. This is possibly why, when the structure is not
available, researchers have tried to artificially build Nearest Neighbor (NN) graphs from tabular data,
by connecting entities based on some attribute similarity criterion, with applications in healthcare
[44, 65], fake news and spam detection [39, 7], biology [77, 42], and document classification [56] to
name a few. From an information-theoretic perspective, the creation of such graphs does not add new
information as it depends on the available data; that said, what makes their use plausible is that the
graph construction is a form of feature engineering that often encodes the homophily assumption.
Combined with the inductive bias of Deep Graph Networks (DGNs) [59, 46], this strategy aims at
improving the generalization performances on tabular data compared to structure-agnostic baselines,
for example, a Multi-Layer Perceptron (MLP).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Indeed, using a k-NN graph [21] has recently improved the node classification performances under
the scarcity of training labels [24, 23]. This is also known as the semi-supervised setting, where
one can access the features of all nodes but the class labels are available for a handful of those. A
potential explanation for these results is that, by incorporating neighboring values into each entity’s
representation, the neighborhood aggregation performed by DGNs acts as a regularization strategy
that prevents the classifier from overfitting the attributes of the few labeled nodes, similar to input
jittering [57, 62, 6]. However, it is still unclear what happens when one has access to all training
labels (hereinafter the fully-supervised setting), namely if these graph-building strategies grant a
statistically significant advantage in generalization compared to a structure-agnostic baseline. In this
respect, proper comparisons against such baselines are often lacking or unclear in previous works,
an issue that has also been reported in recent papers about the reproducibility of node and graph
classification experiments [61, 22, 54].

In addition, it was recently shown [43] that homophily is not required to achieve good classification
performances in node classification tasks; rather, what truly matters is how different the neighborhood
class label distributions of nodes of separate classes are. This resulted in the definition of the empirical
Cross-Class Neighborhood Similarity (CCNS) [43, 13], an object that estimates such similarities
based on the available connectivity structure. Yet, whether or not artificially built graphs can be
useful for the task at hand has mainly remained an empirical question, and more theoretical conditions
for which this happens are still not understood.

In this paper, we introduce a theoretical framework to approach this question, and we provide two
analyses of independent interest. Inspired by the CCNS, Section 3.1 studies the neighboring class
label distribution of nearest neighbor graphs. Then Section 3.2 deals with the distribution of entity
embeddings induced by DGNs on a k-NN graph, and we use it to quantify class separability in
both the input and the embedding spaces. Overall, our theoretical results suggest that building a
k-NN graph is not a good idea. To validate the theory with empirical evidence, we robustly compare
(Sections 4 and 5) four baselines across 11 tabular datasets to check that the k-NN graph construction
does not give statistically significant advantages in the fully-supervised setting. In addition, we
reverse-engineer the theory to learn data distributions that would make a k-NN graph useful in
practice when combined with DGNs. From the empirical results, we conjecture that this is never the
case. Therefore, we hope to raise awareness in the graph machine learning community about the need
for alternative (either NN-based or not) graph construction techniques.

In summary, our contributions are: i) under some assumptions, we can estimate the CCNS for nearest
neighbor graphs and provide its first lower bound; ii) we study how applying a simple DGN to
an artificial k-NN graph affects the class separability of the input data; iii) we carry out a robust
comparison between structure-agnostic and structure-aware baselines on a set of 11 datasets that is in
agreement with our theoretical results; iv) qualitative analyses based on the theory further suggest
that using the k-NN graph might not be advisable.

2 Related Work

The early days of graph representation learning date back to the end of the previous century, when
researchers proposed backpropagation through structures to process directed acyclic graphs [63, 25].
These ideas laid the foundations for the adaptive processing of cyclic graphs by the recurrent Graph
Neural Network [59] and the feedforward Neural Network for Graphs [46], which today’s DGNs
build upon. Both methods iteratively compute embeddings of the graphs’ entities (also called nodes)
via a local and iterative message passing mechanism [27] that propagates the information through
the graph. In recent years, many neural and probabilistic DGNs have emerged [50, 36, 31, 69, 74, 3]
bridging ideas from different fields of machine learning; we set up our analysis in the context of
these message-passing architectures. Even more recently, transformer models have begun to appear
in graph-related tasks as well [19, 37, 75]. Akin to kernel methods for graphs [71, 38], this class
of methods mainly relies on feature engineering to extract rich information from the input graph,
and some perform very well at molecular tasks [41]. However, the architecture of transformers
is not intrinsically more expressive than DGNs, and their effectiveness depends on the specific
encodings used [48]. Therefore, gaining a better understanding of the inductive bias of DGNs remains
a compelling research question.

2

The construction of NN graphs found recent application in predicting the mortality of patients,
by connecting them according to specific attributes of the electronic health records [44, 65]. In
addition, it was used in natural language processing to connect messages and news with similar
contents to tackle spam and fake news detection, respectively [39, 7]. In both cases, the authors
computed similarity based on some embedding representation of the text, and the terms’ frequency in
a document was the graph-building criterion for a generic document classification task [56]. Finally,
k-NN graphs have also been built based on chest computerized tomography similarity for early
diagnoses of COVID-19 [77, 42] or to understand if debts will be repaid in time [29].

Most of the theoretical works on DGNs deal with the problems of over-smoothing [40, 15, 14, 11]
and over-squashing [1, 66, 28] of learned representations, as well as the discriminative power of such
models [47, 74, 26, 10]. In this context, researchers mostly agreed that DGNs based on message
passing perform favorably for homophilic graphs and not so much for heterophilic ones [79]. However,
recent works suggest a different perspective; the generalization performances depend more on the
neighborhood distributions of nodes belonging to different classes [43] and on a good choice of the
model’s weights [67]. The Cross-Class Neighborhood Similarity (CCNS) Ma et al. [43] stands out
as an effective (but purely empirical) strategy to understand whether a graph structure is useful or not
for a node classification task. In our work, we take inspiration from the CCNS to study the behavior
of the neighborhood class label distributions around nodes and compute the first approximation and
lower bound of the CCNS for NN graphs without the need to explicitly build them.

Structure learning and graph rewiring are also related but orthogonal topics. Rather than pre-
computing a fixed structure, these approaches discover latent dependencies between samples [24, 72]
and can enrich the original graph structure when this is available [17, 76, 66, 34]. They have been
applied in contexts of scarce supervision, where a k-NN graph proved to be an effective baseline
when combined with DGNs [23]. At the same time, the combinatorial nature of graphs makes it
difficult and expensive to explore the space of all possible structures, making the a priori construction
of the graph a sensible and efficient alternative.

3 Methodology

We begin by introducing notions and assumptions that will be used throughout the paper. Our starting
point is a classification task over a set of classes C, where each sample u is associated with a vector
of D attributes xu ∈ RD and a target class label yu ∈ C.

A graph g of size N is a quadruple (V, E ,X ,Y), where V = {1, . . . , N} represents the set of nodes
and E is the set of directed edges (u, v) from node u to node v. The symbol X = {Xu,∀u ∈ V}
defines the set of random variables (r.v.) with realizations xu ∈ RD, u ∈ V . The same definition
applies to the set of target variables Y = {Yu,∀u ∈ V} and their realizations yu ∈ C, u ∈ V . When
we talk about the subset of nodes with target label c ∈ C, we use the symbol Vc; also, we define the
neighborhood of node u as Nu = {v ∈ V|(v, u) ∈ E}.

A Gaussian (or normal) univariate distribution with mean and standard deviation µ, σ ∈ R, σ > 0
is represented as N (·;µ, σ2), using µ ∈ RD,Σ ∈ RD×D for the multivariate case. The probability
density function (p.d.f.) of a univariate normal r.v. parametrized by µ, σ is denoted by ϕ(·) together
with its cumulative density function (c.d.f.) F (w) = Φ(w−µ

σ) = 1
2 (1 + erf(w−µ

σ
√
2
)), where erf is the

error function. Subscripts will denote quantities related to a specific random variable.

We want to transform the initial task into a node classification problem, where different i.i.d. samples
become the nodes of a single graph, and the edges are computed by some nearest neighbor al-
gorithm. We assume (assumption 1) the true data distribution p(X = x) of each sample (thus
abstracting from u) is defined by the graphical model of Figure 1 (left). This model reflects
the common assumption that observables of a given class share the same distribution [30, 70],
and we choose this distribution to be a mixture of Gaussian distributions. Such a choice is not
restrictive since, in principle, with enough mixture components it is possible to approximate al-
most any continuous density [9]. Note that it is also possible to sample discrete attribute val-
ues by rounding the samples of a properly parametrized Gaussian mixture. Formally, we con-
sider |C| latent classes modeled by a categorical r.v. C with prior distribution p(C = c) and
|M| mixtures for each class modeled by M ∼ p(M = m|C = c),m ∈ M, c ∈ C, such that
p(x|c) =

∑M
m=1 p(x|m, c)p(m|c). In Section 3.1, we further require (assumption 2) that the

3

M XC

data model

Figure 1: Left: we represent assumption 1 on the data distribution through a graphical model, i.e., a
hierarchical mixture of distributions, where observed variables are shaded and latent ones are white
circles. Right: a visual example of a data distribution generated by the graphical model, with an
intuitive visualization of the class posterior mass around a point xu.

D observables are conditionally independent when the class c and the mixture m are known, i.e.,
p(X = x) =

∑|C|
c=1 p(c)

∑|M|
m=1 p(m|c)

∏D
f=1 p(xf |m, c). We refer the reader to Section 3.3 for a

discussion about this assumption. Figure 1 (right) depicts an example of one such data distribution
for D = 1. Hereinafter we shall have p(Xf = xf |m, c) = N (xf ;µcmf , σ

2
cmf) for the individual

attributes and p(X = x|m, c) = N (x;µmc,Σmc) for the multivariate case. We will also use
diagonal covariance matrices denoted as Λmc = diag(σ2

mc1, . . . , σ
2
mcD). Finally, akin to [43], we

assume that the neighbors of node v are i.i.d. (assumption 3), meaning their attributes and class
distributions only depend on the properties of node v; such an assumption is especially reasonable
when one considers how nearest neighbor structures are typically built, by picking a set of neighbors
based only on their distance to the target node v.

To talk about the surroundings of a point in space we will use the notion of hypercubes (or D-cubes).
A hypercube of dimension D centered at point x ∈ RD of side length ε > 0 is the set of points given
by the Cartesian product Hε(x) = [x1 − ε

2 , x1 +
ε
2]× · · · × [xD − ε

2 , xD + ε
2].

3.1 Analytical Computation of the CCNS for Nearest Neighbor Graphs

The CCNS [43] computes how similar the neighborhoods of two distinct nodes are in terms of class
label distribution, and it provides an aggregated result over pairs of target classes. Intuitively, if nodes
belonging to distinct classes happen to have similar neighboring class label distributions, then it
will be unlikely that a classifier will correctly discriminate between these two nodes after a message
passing operation because the nodes’ embeddings will look very similar. On the other hand, nodes of
different classes with very different neighboring class label distributions will be easier to separate.
This intuition implies that nodes of different classes typically have different attribute values.

Definition 3.1 (Cross Class Neighborhood Similarity, extended from [43]). Given a graph g, the
cross-class neighborhood similarity between classes c, c′ ∈ C is given by

s(c, c′) = Ep(x|c)p(x′|c′)[Ω(qc(x), qc′(x
′))] (1)

where Ω computes a (dis)similarity score between vectors and the function qc : RD → R|C| (resp
qc′) computes the probability vector that a node of class c (resp. c′) with attributes x (resp. x′) has a
neighbor of class c′′, for every c′′ ∈ C.

The definition of qc and qc′ is the key ingredient of Equation 1. In the following, we are going to
show that it is possible to analytically compute these quantities when we assume an NN structure.
For every norm-induced metric, which is also convex, the lower bound of Equation 1 follows from
Jensen’s inequality and from the linearity of expectation:

s(c, c′) ≥ || Ep(x|c)p(x′|c′)[qc(x)− qc′(x
′)] || = || Ep(x|c)[qc(x)]− Ep(x′|c′)[qc′(x

′)] ||. (2)

This bound assigns non-zero values to the inter-class neighborhood similarity, but as we shall see one
can resort to Monte Carlo approximations of Equation 1 to estimate both the inter and intra-class
scores. From now on, we will use the Euclidean distance as our Ω.

4

We first study the class label distribution in the surroundings of some node u. In the example of
Figure 1 (right), we consider a binary classification problem with |M| = 2 and depict the conditional
distributions p(xu|C = 0), p(xu|C = 1) with green and blue curves, respectively. A dashed black
line, instead, represents p(x) assuming a non-informative class prior. If the neighbors of u belong to
the hypercube Hε(xu) for some ε, then the probability that a neighbor will belong to class c depends
on how much class-specific probability mass, that is the shaded green and blue areas, there is in the
hypercube. Since the blue area is larger than the green one, finding a neighbor of class 1 is more
likely to happen. Formally, we define the (unnormalized) probability of a neighbor belonging to class
c in a given hypercube as the weighted posterior mass of C contained in that hypercube.

Definition 3.2 (Posterior Mass Mx(c, ε) Around Point x). Given a hypercube Hε(x) centered at
point x ∈ RD, and a class c ∈ C, the posterior mass Mx(c, ε) is the unnormalized probability that a
point in the hypercube has class c:

Mx(c, ε) = Ew∈Hε(x)[p(c|w)] =

∫
w∈Hε(x)

p(c|w)p(w)dw = p(c)

∫
w∈Hε(x)

p(w|c)dw, (3)

where the last equality follows from Bayes’ theorem.

The following proposition shows how to compute Mx(c, ε) analytically. The interested reader can
find all proofs of our paper in Section A.3.

Proposition 3.3. Under assumptions 1,2, Mx(c, ε) has the following analytical form

p(c)

|M|∑
m=1

p(m|c)
D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
, (4)

where Zcmf is a r.v. with Gaussian distribution N (·;µcmf , σ
2
cmf).

To reason about an entire class rather than individual samples, therefore being able to compute the
two quantities on the right-hand side of Equation 2, we extend the previous definition by taking into
account all samples of class c′ ∈ C. Thus, we seek to compute the average unnormalized probability
that a sample belongs to class c in the hypercubes centered around samples of class c′.

Definition 3.4 (Expected Class c Posterior Mass Mc′(c, ε) for Samples of Class c′). Given a hyper-
cube length ε and a class c′ ∈ C, the unnormalized probability that a sample of class c′ has another
sample of class c lying in its hypercube is defined as

Mc′(c, ε)
def
= Ex∼p(x|c′)[Mx(c, ε)]. (5)

It is also possible to compute Mc′(c, ε) in closed form, which we show in the next theorem.

Theorem 3.5. Under assumptions 1,2, Mc′(c, ε) has the following analytical form

p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)
D∏

f=1

Φ

µc′m′f + ε
2 − µcmf√

σ2
cmf + σ2

c′m′f

−Φ

µc′m′f − ε
2 − µcmf√

σ2
cmf + σ2

c′m′f

 . (6)

Thanks to Theorem 3.5, we know how much class-c posterior probability mass we have, on average,
around samples of class c′. To get a proper class c′-specific distribution over neighboring class labels,
we apply a normalization step using the fact that Mc′(c, ε) ≥ 0 ∀c ∈ C.

Definition 3.6 (ε-Neighboring Class Distribution). Given a class c′ and an ε > 0, the neighboring
class distribution around samples of class c′ is modeled as

pc′(c, ε) =
Mc′(c, ε)∑|C|
i=1 Mc′(i, ε)

. (7)

This distribution formalizes the notion that, in a neighborhood around points of class c′, the probability
that points belong to class c does not necessarily match the true prior distribution p(C = c). However,
this becomes false when we consider an infinitely-large hyper-cube, as we show in the next result.

5

Proposition 3.7. Let the first D derivatives of
∑|C|

i=1 Mc′(i) be different from 0 in an open interval I
around ε = 0 and not tending to infinity for ε → 0. Under assumptions 1,2, Equation 7 has limits

lim
ε→0

pc′(c, ε) =
p(c)

∑|M|
m,m′ p(m|c)p(m′|c′)

∏D
f=1 ϕZcmm′f (0)∑|C|

i p(i)
∑|M|

m,m′ p(m|i)p(m′|c′)
∏D

f=1 ϕZimm′f (0)
, lim

ε→∞
pc′(c, ε) = p(c)

(8)

where Zimm′f has distribution N (·;−aimm′f , b
2
imm′f),

aimm′f = 2(µc′m′f − µimf) and bimm′f = 2
√
σ2
imf + σ2

c′m′f .

The choice of ε, which implicitly encodes our definition of “nearest” neighbor, plays a crucial role in
determining the distribution of a neighbor’s class label. When the hypercube is too big, the probability
that a neighbor has class c matches the true prior p(c) regardless of the class c′, that is we make
a crude assumption about the neighbor’s class distribution of a sample. If we instead consider a
smaller hypercube, then we observe a less trivial behavior and the probability pc′(c, ε) is directly
proportional to the distances between the means µc′m′ and µcm, as one would intuitively expect for
simple examples.

To summarize, we can use pc′(c, ε) as an approximation for Ep(x|c′)[q
′
c(x)] of Equation 2; similarly,

we can use a normalized version of Mc(x) in place of qc(x) to estimate Equation 1 via Monte
Carlo sampling without the need of building a NN graph. For space reasons, in Appendix A.5, we
qualitatively discuss the results for a 1-dimensional instance of a data distribution, and we investigate
the quality of the CCNS approximation while varying k.

3.2 Class Separability Induced by DGNs on a k-NN Graph

This section formally investigates the properties of the embedding space created by DGNs under
the k-NN graph. Our goal is to understand whether using such a graph can improve the separability
between samples belonging to different classes or not. Provided that our assumptions hold, both
conclusions would be interesting: if the k-NN graph helps, then we know the conditions for that to
happen; if that is not the case, we have identified and formalized the need for new graph construction
mechanisms.

Akin to previous works [40, 16, 5, 43], we consider a linear 1-layer DGN with the following
neighborhood aggregation scheme that computes node embeddings hu ∈ RD ∀u ∈ V:

hu =
1

k

∑
v∈Nu

xv. (9)

The node embedding of sample u is then fed into a standard machine learning classifier, e.g., an MLP.
As done in previous works, we assume that a linear (learnable) transformation W ∈ RD×D of the
input xv, often used in DGN models such as the Neural Network for Graphs [46] and the Graph
Convolutional Network [36], is absorbed by the subsequent classifier.

Mimicking the behavior of the k-NN algorithm, which connects similar entities together, we model
the attribute distribution of a neighbor v ∈ Nu as a normal distribution N (xv;xu, diag(σ

2, . . . , σ2),
where σ2 is a hyper-parameter that ensures it is highly unlikely to sample neighbors outside of
Hε(xu); from now on we use the symbol σε to make this connection clear. Under assumption
3, neighbors’ sampling is independently repeated k times and the attributes are averaged together.
Therefore, we use statistical properties of normal distributions (please refer to Lemmas A.2 and A.1)
to compute the resulting node u’s embedding distribution:

p(hu|xu) = N (hu;xu,Λε), Λε = diag(σ2
ε/k, . . . , σ

2
ε/k). (10)

Therefore, the more neighbors a node has (i.e., higher k) the more skewed the resulting distribution is
around xu (i.e., lower variance). This is a fairly reasonable assumption if we think of an infinitely
large dataset; informally, each of the k neighbors will be much more likely to lie near xu than near
the surface of the hypercube, hence hu will be close to xu with high probability.

To understand how Equation 9 affects the separability of samples belonging to different classes, we
compute a divergence score between the distributions p(h|c) and p(h|c′) [68, 51, 20, 8, 52]. When

6

this divergence is higher than that of the distributions p(x|c) and p(x|c′), then the k-NN structure
and the inductive bias of DGNs are helpful for our task. Below, we show that for two mixtures of
Gaussians we can obtain the analytical form of their Squared Error Distance (SED), the simplest
symmetric divergence defined as SED(p, q) =

∫
(p(x)−q(x))2dx. This provides a concrete strategy

to understand, regardless of training, if it would make sense to build a k-NN graph for our problem.1

Proposition 3.8. Under assumptions 1,3, let us assume that the entity embeddings of a 1-layer DGN
applied on an artificially built k-NN graph follow the distribution of Equation 10. Then the Squared
Error Distances SED(p(h|c), p(h|c′)) and SED(p(x|c), p(x|c′)) have analytical forms.

In the interest of space, we have deferred the analytic formulas to the appendix.

As an immediate but important corollary, a k-NN graph improves the ability to distinguish samples
of different classes c, c′ if it holds that SED(p(h|c), p(h|c′)) > SED(p(x|c), p(x|c′)). Indeed, if
class distributions diverge more in the embedding space, which has the same dimensionality as the
input space, then they will be easier to separate by a universal approximator such as an MLP. We use
this corollary in our experiments, by reverse-engineering the theory to find out “good” data models.

3.3 Limitations and Future Directions

It is extremely challenging to prove that a k-NN graph never helps to improve the classification
performances using a DGN. The reason is that theoretical results of this kind rely, as is common
[43], on assumptions of the true data generating distribution and on the specific assignments of
parameters such as µ and Σ. The true data distribution is typically unknown and hard to find [68],
but assumptions 1 and 3 remain quite reasonable due to the flexibility of mixture models and the
nature of the nearest neighbors construction. In addition, assumption 2 has been widely used in the
graphical models literature because it is particularly attractive from a theoretical perspective [64],
despite it cannot cover all real-world cases; we note, however, that it plays no role in the analysis
of Section 3.2. Finally, as done in the past [40, 15, 5, 43], we have ignored the non-linearity in the
neighborhood aggregation of Equation 9. As we shall see in our empirical results, the intuitions we
gained from the theoretical analysis seem to hold for non-linear models as well.
Our analysis has considered hyper-cubes in the interest of simplicity, but nearest neighbor graphs
typically compute hyper-balls centered at a point. In high-dimensional spaces, the volume of hyper-
cubes and hyper-balls can differ in non-trivial ways [18], so future work should improve on our
results by replacing hyper-cubes with hyper-balls. Similarly, the results of Section 3.1 could be used
to guide the definition of new graph construction strategies based on attribute similarity criteria, for
instance by proposing a good ε for the data at hand. We leave this idea to future investigations.

4 Experiments

We conduct quantitative and qualitative experiments to support our theoretical insights. For all
experiments we used a server with 32 cores, 128 GBs of RAM, and 4 GPUs with 11 GBs of memory.

Quantitative Experiments Quantitatively speaking, we want to compare a structure-agnostic
baseline, namely an MLP [58], against different graph machine learning models, such as a simple
DGN (sDGN) that implements Equation 9 followed by an MLP classifier, the Graph Isomorphism
Network (GIN) [74] and the Graph Convolutional Network (GCN) [36]. The goal is to show that in
the fully-supervised setting using a k-NN graph does not offer any concrete benefit. We consider 11
datasets, eight of which were taken from the UCI repository [2], namely Abalone, Adult, Dry Bean,
Electrical Grid Stability, Isolet, Musk v2, Occupancy Detection, Waveform Database Generator v2,
as well as the citation networks Cora, Citeseer [60], and Pubmed [49]. For each dataset, we build a
k-NN graph, where k is a hyper-parameter, using the node attributes’ similarity to find neighbors
(discarding the original structure in the citation networks). We report some datasets statistics in Table
2, and the metric to optimize is the F1 score. Note that it is difficult to ascertain if our assumptions
hold for these datasets because we have no access to the true data distribution; however, a robust
comparison for this topic is lacking in the literature and can help us gather further insights on whether
our ideas might also hold in a more general setting. For every dataset and model, we follow the
rigorous and fair evaluation setup of [22]: we perform a 10-fold cross validation for risk assessment,

1The proof also makes a simple but meaningful connection to the over-smoothing problem.

7

Table 1: Node classification mean and standard deviation results for a structure-agnostic baseline
(MLP) compared to graph machine learning methods applied to artificially built k-NN graphs. We
performed model selection w.r.t. the F1 score, but we also include the accuracy for completeness.

MLP sDGN GIN GCN
F1 ACC F1 ACC F1 ACC F1 ACC

Abalone 0.55±0.02 55.5±1.5 0.55±0.01 55.3±1.2 0.54±0.03 54.2±1.7 0.54±0.02 54.4±1.7

Adult 0.70±0.02 77.6±1.7 0.72±0.02 77.8±1.9 0.69±0.02 76.2±1.3 0.70±0.02 78.6±0.9

DryBean 0.78±0.04 77.4±4.0 0.77±0.06 77.3±5.4 0.75±0.03 74.4±3.2 0.71±0.07 72.6±4.9

eGrid 0.95±0.01 95.6±0.6 0.95±0.01 95.8±0.4 0.93±0.01 94.0±0.6 0.82±0.02 83.1±1.4

Isolet 0.95±0.01 95.4±0.5 0.95±0.00 95.4±0.3 0.95±0.01 95.3±0.7 0.92±0.01 91.7±1.4

Musk 0.99±0.01 99.3±0.3 0.99±0.01 99.5±0.3 0.94±0.05 97.0±2.2 0.94±0.02 96.7±0.9

Occupancy 0.99±0.01 98.9±0.4 0.99±0.01 98.9±0.5 0.98±0.01 98.6±0.6 0.90±0.17 95.8±6.0

Waveform 0.85±0.02 85.5±1.7 0.85±0.02 85.3±1.5 0.84±0.02 84.5±1.7 0.84±0.03 84.0±2.2

Cora 0.71±0.04 74.3±2.4 0.71±0.03 74.1±2.5 0.72±0.03 74.9±2.4 0.70±0.04 73.0±2.6

Citeseer 0.69±0.02 71.8±1.9 0.69±0.03 72.9±2.7 0.69±0.02 72.1±2.2 0.71±0.03 74.4±2.4

Pubmed 0.87±0.01 87.6±0.7 0.87±0.01 87.6±0.6 0.87±0.01 86.6±0.9 0.83±0.01 83.5±0.9

with a hold-out model selection (90% training/10% validation) for each of the 10 external training
folds. We report the hyper-parameters for the model selection phase in Table 3. For each of the 10 best
models, we perform 3 final re-training runs and average their test performances on the corresponding
external fold to mitigate bad initializations. The final score is the average of these 10 test results.

Qualitative Experiments We provide four qualitative experiments. First, we study how pc(c
′, ε)

changes for varying values of ε and different priors p(c) under specific class-conditional data
distributions. Second, we analyze the first limit of Proposition 3.7 under the same conditional
data distributions as before (D = 1 hence assumptions are trivially satisfied). We translated one
of the distributions by different values and computed the SED between them, together with the
quantity pc(c

′, ε) under different priors. The goal here is to show the relation between the SED and
the limit. Third, we reverse-engineer the theoretical results to find, if possible, data distributions
satisfying SED(p(h|c), p(h|c′)) > SED(p(x|c), p(x|c′)). There is no dataset associated with this
experiment, rather we learn the parameters of the graphical model of Figure 1 (left) together with
ε, k, σε (k is treated as a continuous value during the optimization) in order to minimize the following
objective: LSED − λLCCNS , where λ is a hyper-parameter. LSED sums SED(p(x|c), p(x|c′))−
SED(p(h|c), p(h|c′)) for all pairs of distinct classes c, c′, whereas LCCNS computes the lower
bound for the inter-class similarity, thus acting as a regularizer that avoids the trivial solution
p(x|c) = p(x|c′) for class pairs c, c′. The set of configurations for this experiment is reported in
Table 4, and we use Adam [35] as optimizer. In the last qualitative experiment, we compute the
true CCNS and its approximations for the specific example of Figure 1 (right), showing that the
quantities obtained in Proposition 3.3 and Theorem 3.5 are good representatives of the CCNS for
nearest neighbor graphs. Please refer to Appendix A.5 for an additional study of this kind. 2

5 Empirical Results

We now present our empirical results to support the theory. The interested reader can find statistics
on the chosen hyper-parameters and additional ablation studies in Appendix A.6.

Quantitative Results Table 1 details the empirical comparison between the structure-agnostic MLP
and the structure-aware baselines sDGN, GIN, and GCN. We observe that in terms of Micro F1 score,
which is the metric all models are optimized against, there is no statistically significant improvement
in performance (unpaired two samples t-test with p-value 0.05) for the different DGNs when using
an artificial k-NN graph. When looking at accuracy one can observe a similar trend, but the results
fluctuate more because accuracy is not the metric to be optimized. These results further confirm that
using k-NN graphs does not bring a substantial contribution to the generalization performances. On
the contrary, it would seem the k-NN graph can even be considered harmful for the performances of
GIN and GCN (e.g., DryBean, Musk, eGrid, Waveform). We hypothesize that the information flow

2Code: https://github.com/nec-research/class_distributions_graphs_tabular_data

8

https://github.com/nec-research/class_distributions_graphs_tabular_data

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

pd
f

p(x|C = 0)
p(x|C = 1)

0 2 4 6 8 10
0.35

0.40

0.45

0.50

0.55

0.60

0.65

p c
(c
′ ,

)

p(c) = [0.5, 0.5]
p0(0,)
p0(1,)
p1(0,)
p1(1,)

0 2 4 6 8 10
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p c
(c
′ ,

)

p(c) = [0.3, 0.7]

p0(0,)
p0(1,)
p1(0,)
p1(1,)

Figure 2: We show how pc(c
′, ε) varies for different values of ε and prior distributions assuming the

class-conditional data distributions on the left.

of message passing does not act anymore as a regularizer (we refer the reader to the discussion in
Section 1) as it might happen the scarce supervision scenario [23], rather it becomes harmful noise
for the learning process. This is possibly the reason why sDGN, which is also the simplest of the
DGNs considered, tends to overfit less such noise and always performs on par with the MLP.

Therefore, one of the main takeaways of the quantitative analysis is that the k-NN graph might
generally not be a good artificial structure for addressing the classification of tabular data using graph
representation learning methods. Different artificial structures, possibly inspired by our theoretical
results, should be proposed to create graphs that help DGNs to better generalize in this context. We
note that this research direction is broader than tabular classification, but tabular data offers a great
starting point since samples are typically assumed i.i.d. in ML and are thus easier to manipulate. Also,
in Appendix A.4, we discuss the impact of a different Ω (the cosine similarity) in the construction of
the k-NN graphs.

These results also substantiate our conjecture that, under assumptions 1, 3, the k-NN graph never
induces a better class separability in the embedding space: since p(h|c) is a mixture of distributions
with the same mean but higher variance than p(x|c) (proof of Proposition 3.8) , in a low-dimensional
space intuition suggests that the distributions of different classes will always overlap more in the
embedding space than in the input space.

Qualitative Results We present the main qualitative results in Figures 2, 3 and 4. First, as we can
see from Figure 2, when ε is very small the probability that a neighbor is of the same class is high
for both classes (but not the same), since there is less overlap between samples of the green (C = 0)
and blue (C = 1) distributions. As we increase the side length of the hypercube (or equivalently,
we consider more and more nearest neighbors), the curves converge to the priors that we set for this
example. This result is in agreement with the second limit of Proposition 3.7.

As regards the first limit of Proposition 3.7, in Figure 3 we observe that the behavior of
limε→0 pc(c

′, ε) is non-trivial when the two curves still overlap. In particular, the greater the overlap
the closer pc(c, ε) is to p(c), which makes sense since it becomes harder to distinguish samples of
different classes. On the other hand, the behavior becomes trivial when the curves are distant enough
from each other: there, in the limit, every node will only have neighbors of the same class.

In the reverse-engineering experiment of Figure 4 (left), for each possible configuration of the
models tried in Table 4, we have computed the LSED for varying values of k ∈ [1, 500]. We
have then normalized all values for readability, by dividing each value of SED(p(h|c), p(h|c′)) by
SED(p(x|c), p(x|c′)), as the latter is independent of k. This particular figure depicts the curves for
the binary classification cases, but the conclusions do not change for multi-class classification, for
instance with 5 classes. We find that the normalized value of SED(p(h|c), p(h|c′)) on the y-axis
is always upper-bounded by 1, meaning that SED(p(h|c), p(h|c′)) < SED(p(x|c), p(x|c′)) for
all the configurations tried, even in higher dimensions. This result further indicates that it could be
unlikely that a k-NN graph induces better class separability in the embedding space of a DGN. We
ask machine learning practitioners to take these insights into consideration when building artificial
nearest neighbor graphs.

Lastly, we go back to the data distribution of Figure 1 (right) and show how to approximate the
true CCNS under the k-NN graph with our theoretical framework. We first generate 10000 data
points and set w.l.o.g. k = 5 to connect them. We compute the lower bound of the CCNS in the first

9

0 1 2 3 4 5
x

0.00

0.25

0.50

0.75

1.00

pd
f

p(x|C = 0)
p(x|C = 1)

3 2 1 0 1 2 3
translation of p(x|0)

2

4

6

8

SE
D

(p
(x

|0
),

p(
x|

1)
)

3 2 1 0 1 2 3
translation of p(x|0)

0.00

0.25

0.50

0.75

1.00

lim
0p c

(c
′ ,

)

p(c) = [0.5, 0.5]

p0(0,)
p0(1,)
p1(0,)
p1(1,)

3 2 1 0 1 2 3
translation of p(x|0)

0.00

0.25

0.50

0.75

1.00

lim
0p c

(c
′ ,

)

p(c) = [0.3, 0.7]

p0(0,)
p0(1,)
p1(0,)
p1(1,)

Figure 3: We show how pc(c
′, ε) varies for different translations of the conditional data distributions

p(x|0) and different priors as ε approaches 0.

0 100 200 300 400 500
k

0.5

1.0

SE
D
(H

0,
H
1)

0 1
(a)

0
1

0 1

1 0

0 1
(b)

0.27 1

1.1 0.3

0 1
(c)

0.29 1.1

1.1 0.3

Figure 4: Left: Each curve specifies the variation of SED(p(h|c), p(h|c′)) against different values
of k for different hyperparameters’ configurations that have been trained to minimize the learning
objective. The curves are normalized w.r.t their corresponding SED(p(x|c), p(x|c′)). Right: The
CCNS lower bound (a), its Monte Carlo approximation for ε ≈ 0.1, obtained without creating any
graph (b), and the true CCNS (c) for the example of Figure 1 and a 5-NN graph. Heatmaps (a) and
(b) are computed using the theory of Section 3.1. Please refer to the text for more details.

heatmap (a), a Monte Carlo (MC) approximation of Equation 1 (1000 samples per class pair) in the
heatmap (b), and the true CCNS in the heatmap (c). In this case the lower bound has computed a
good approximation of the inter-class CCNS, and the MC estimate is very close to the true CCNS.
In Appendix A.6, we also show that the MC approximation is better for higher values of k. It is
important to recall that both heatmaps (a) and (b) are computed using the theoretical results of Section
3.1 and an ε close to the empirical one, hence it seems that the theory is in accord with the evidence.

6 Conclusions

We introduced a new theoretical tool to understand how much nearest neighbor graphs can help in
the classification of tabular data. Our theory and empirical evidence suggest that some attribute-
based graph construction mechanisms, namely the k-NN algorithm, are not promising strategies
for obtaining better DGNs’ generalization performances. This is a particularly troubling result
since researchers often used nearest neighbor graphs when the graph structure was unavailable. We
recommend using great care in future empirical evaluations of such techniques by always comparing
against structure-agnostic baselines to ascertain real improvements from fictitious ones. Moreover,
we provided a theoretically principled way to model the CCNS for nearest neighbor graphs, showing
its approximation in a practical example. We hope that the results of this work will foster better
strategies for building artificial graphs or as a guideline for new structure learning methods.

10

Acknowledgments and Disclosure of Funding

The author would like to acknowledge, in no particular order, Sascha Saralajew, Julia Gastinger,
Ammar Shaker, Filippo Grazioli, Luca Oneto, Sandra Tartarelli, and Timo Sztyler for the stimulating
discussions and extremely helpful feedback. A warm thank you also goes to the reviewers for striving
to further improve this work and make it ready for publication.

References
[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical

implications. In 9th International Conference on Learning Representations (ICLR), 2021.
[2] Arthur Asuncion and David Newman. Uci machine learning repository, 2007. URL https:

//archive.ics.uci.edu/.
[3] Davide Bacciu, Federico Errica, and Alessio Micheli. Probabilistic learning on graphs via

contextual architectures. Journal of Machine Learning Research, 21(134):1–39, 2020.
[4] Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to

deep learning for graphs. Neural Networks, 129:203–221, 9 2020.
[5] Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-

supervised classification: Improved linear separability and out-of-distribution generalization. In
Proceedings of the 38th International Conference on Machine Learning (ICML), 2021.

[6] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of machine learning
research, 7(11), 2006.

[7] Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush K Ray, Manal Saadi, and
Fragkiskos D Malliaros. Semi-supervised learning and graph neural networks for fake news
detection. In Proceedings of the IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 2019.

[8] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. In Proceedings of the 2018 ACM Conference on Computer and Communications
Security (SIGSAC), 2018.

[9] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.
[10] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,

and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. In Proceedings of the
35th Conference on Neural Information Processing Systems (NeurIPS), 2021.

[11] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Lio, and
Michael M. Bronstein. Neural sheaf diffusion: A topological perspective on heterophily
and oversmoothing in GNNs. In Proceedings of the 36th Conference on Neural Information
Processing Systems (NeurIPS), 2022.

[12] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017.

[13] Andrea Cavallo, Claas Grohnfeldt, Michele Russo, Giulio Lovisotto, and Luca Vassio. 2-hop
neighbor class similarity (2ncs): A graph structural metric indicative of graph neural network
performance. Workshop on Graphs and more Complex structures for Learning and Reasoning
(AAAI), 2023.

[14] Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In Proceedings of the 38th International
Conference on Machine Learning (ICML). PMLR, 2021.

[15] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the 34th AAAI Conference on Artificial Intelligence (AAAI), pages 3438–3445, 2020.

[16] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In Proceedings of the 37th International Conference on Machine
Learning (ICML), 2020.

11

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/

[17] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. In Proceedings of the 34th Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[18] Pedro Domingos. A few useful things to know about machine learning. Communications of the
ACM, 55(10):78–87, 2012.

[19] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
Workshop on Deep Learning on Graphs: Methods and Applications (AAAI), 2021.

[20] Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large
margin deep networks for classification. In Proceedings of the 32nd Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[21] David Eppstein, Michael S Paterson, and F Frances Yao. On nearest-neighbor graphs. Discrete
& Computational Geometry, 17:263–282, 1997.

[22] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. In 8th International Conference on Learning
Representations (ICLR), 2020.

[23] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves
structure learning for graph neural networks. In Proceedings of the 35th Conference on Neural
Information Processing Systems (NeurIPS), 2021.

[24] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete
structures for graph neural networks. In Proceedings of the 36th International Conference on
Machine Learning (ICML), 2019.

[25] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adaptive
processing of data structures. IEEE Transactions on Neural Networks, 9(5):768–786, 1998.

[26] Floris Geerts, Filip Mazowiecki, and Guillermo Perez. Let’s agree to degree: Comparing
graph convolutional networks in the message-passing framework. In Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

[27] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning (ICML), 2017.

[28] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable archi-
tecture for deep graph networks. In 11th International Conference on Learning Representations
(ICLR), 2023.

[29] Xiawei Guo, Yuhan Quan, Huan Zhao, Quanming Yao, Yong Li, and Weiwei Tu. Tabgnn:
Multiplex graph neural network for tabular data prediction. Workshop on Deep Learning
Practice for High-Dimensional Sparse Data (KDD), 2021.

[30] Jacques A Hagenaars and Allan L McCutcheon. Applied latent class analysis. Cambridge
University Press, 2002.

[31] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st Conference on Neural Information Processing Systems
(NIPS), 2017.

[32] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017.

[33] Marko Helén and Tuomas Virtanen. Query by example of audio signals using euclidean distance
between gaussian mixture models. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2007.

[34] Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein.
Differentiable graph module (dgm) for graph convolutional networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(2):1606–1617, 2022.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations (ICLR), 2015.

[36] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations (ICLR), 2017.

12

[37] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In Proceedings of the 35th Conference
on Neural Information Processing Systems (NeurIPS), 2021.

[38] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):1–42, 2020.

[39] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph con-
volutional networks. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM), 2019.

[40] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 2018.

[41] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d
atomistic graphs. In 11th International Conference on Learning Representations (ICLR), 2023.

[42] Siyuan Lu, Ziquan Zhu, Juan Manuel Gorriz, Shui-Hua Wang, and Yu-Dong Zhang. Nagnn:
classification of covid-19 based on neighboring aware representation from deep graph neural
network. International Journal of Intelligent Systems, 37(2):1572–1598, 2022.

[43] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In 10th International Conference on Learning Representations (ICLR), 2022.

[44] Brandon Malone, Alberto Garcia-Duran, and Mathias Niepert. Learning representations of
missing data for predicting patient outcomes. In Workshop on Deep Learning on Graphs:
Method and Applications (AAAI), 2021.

[45] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

[46] Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE
Transactions on Neural Networks, 20(3):498–511, 2009.

[47] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), volume 33, 2019.

[48] Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. arXiv preprint arXiv:2302.04181, 2023.

[49] Galileo Mark Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying
for collective classification. In Proceedings of the Workshop on Mining and Learning with
Graphs (MLG), 2012.

[50] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.

[51] Il-Seok Oh, Jin-Seon Lee, and Ching Y. Suen. Analysis of class separation and combination of
class-dependent features for handwriting recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(10):1089–1094, 1999.

[52] Luca Oneto, Sandro Ridella, and Davide Anguita. Do we really need a new theory to understand
over-parameterization? Neurocomputing, 543, 2023.

[53] KB Petersen and MS Pedersen. The matrix cookbook, version 20121115. Technical report,
Technical University of Denmark, 2012.

[54] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In 11th International Conference on Learning Representations (ICLR),
2023.

[55] Lutz Prechelt. Early stopping—but when? Neural networks: tricks of the trade: second edition,
pages 53–67, 2012.

[56] Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer, Ramakrishna Bairi, and Vijay Lingam.
Hetegcn: heterogeneous graph convolutional networks for text classification. In Proceedings of
the 14th ACM International Conference on Web Search and Data Mining (WSDM), 2021.

13

[57] Russell Reed and Robert J MarksII. Neural smithing: supervised learning in feedforward
artificial neural networks. Mit Press, 1999.

[58] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychological review, 65(6):386, 1958.

[59] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[60] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[61] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation. Workshop on Relational Representation Learning,
Neural Information Processing Systems (NeurIPS), 2018.

[62] Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point cloud: from transductive
to semi-supervised learning. In Proceedings of the 22nd International Conference on Machine
Learning (ICML), 2005.

[63] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

[64] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random fields.
Foundations and Trends® in Machine Learning, 4(4):267–373, 2012.

[65] Catherine Tong, Emma Rocheteau, Petar Veličković, Nicholas Lane, and Pietro Liò. Predicting
patient outcomes with graph representation learning. In AI for Disease Surveillance and
Pandemic Intelligence: Intelligent Disease Detection in Action, pages 281–293. Springer, 2022.

[66] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In 10th International Conference on Learning Representations (ICLR), 2022.

[67] Domenico Tortorella and Alessio Micheli. Leave graphs alone: Addressing over-squashing
without rewiring. In Proceedings of the 1st Conference on Learning on Graphs (LOG), 2022.

[68] Vladimir Vapnik and Vlamimir Vapnik. Statistical learning theory wiley. New York, 1(624):2,
1998.

[69] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations
(ICLR), 2018.

[70] Jeroen K Vermunt and Jay Magidson. Latent class cluster analysis. Applied latent class analysis,
11(89-106):60, 2002.

[71] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.

[72] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics
(tog), 38(5):1–12, 2019.

[73] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

[74] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations (ICLR), 2019.

[75] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In Proceedings
of the 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.

[76] Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2021.

[77] Xiang Yu, Siyuan Lu, Lili Guo, Shui-Hua Wang, and Yu-Dong Zhang. Resgnet-c: A graph
convolutional neural network for detection of covid-19. Neurocomputing, 452:592–605, 2021.

14

[78] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions
on Knowledge and Data Engineering, 34(1):249–270, 2020.

[79] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. In
Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS),
2020.

15

A Appendix

A.1 Dataset Statistics

This section shows the main statistics of the datasets used in this work.

Table 2: Datasets’ statistics.
samples # attributes # classes

Abalone 4177 8 3
Adult 48842 14 2
DryBean 13611 17 7
eGrid 10000 14 2
Isolet 7797 617 26
Musk 6598 168 2
Occupancy 20560 7 2
Waveform 5000 40 3
Cora 2708 1433 7
Citeseer 3327 3703 6
Pubmed 19717 500 3

A.2 Hyper-Parameters Tried

The table below specifies the configurations tried by the model selection procedure for all the baselines
considered in this work. We apply a patience-based early stopping technique on the validation Micro
F1-score as the only regularization technique [55]. The free parameters’ budget of all three baselines
is the same. We used Adam to train all models.

Table 3: Hyper-parameters tried during model selection for all the benchmarks of the paper. Note
that in GCN the use of the normalized Laplacian implies a mean aggregation.

hidden units # layers learning rate k epochs patience aggregation

MLP 32/64/128 1/2/3 1e-2/1e-3 - 5000 1000 -
sDGN 32/64/128 1/2/3 1e-2/1e-3 1/3/5/10 5000 1000 mean
GIN 32/64/128 1/2/3 1e-2/1e-3 1/3/5/10 5000 1000 sum/mean
GCN 32/64/128 1/2/3 1e-2/1e-3 1/3/5/10 5000 1000 mean

The following table, instead, reports the configurations tried during the qualitative experiments. We
still apply a patience-based early stopping technique on LSED.

Table 4: Hyper-parameters tried for the qualitative experiments.
D |M| |C| λ learning rate epochs patience

1, 2, 5, 10, 50 2, 5, 10 2, 5 0.0, 1.0, 5.0, 10.0 1e-2 10000 3000

16

A.3 Proofs

Proposition 3.3. Under assumptions 1,2, Mx(c, ε) has the following analytical form

p(c)

|M|∑
m=1

p(m|c)
D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
, (11)

where Zcmf is a r.v. with Gaussian distribution N (·;µcmf , σ
2
cmf).

Proof. Thanks to the conditional independence assumption, we can compute the integral of a product
as a product of integrals over the independent dimensions. Defining af = xf − ε

2 and bf = xf + ε
2 ,

we have

Ew∈Hε(x)[p(C = c|w)] = p(c)

∫
w∈Hε(x)

p(w|c)dw (12)

= p(c)

∫
w∈Hε(x)

|M|∑
m=1

p(w|m, c)p(m|c)dw (13)

= p(c)

|M|∑
m=1

p(m|c)
∫
w∈Hε(x)

p(w|m, c)dw (14)

= p(c)

|M|∑
m=1

p(m|c)
∫ b1

a1

· ·
∫ bD

aD

D∏
f=1

p(wf |m, c)dwD . . . dw1 (15)

= p(c)

|M|∑
m=1

p(m|c)
D∏

f=1

∫ bf

af

p(wf |m, c)dwf (16)

= p(c)

|M|∑
m=1

p(m|c)
D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
, (17)

where Zcmf ∼ N (·;µcmf , σ
2
cmf)

and the last equality follows from the known fact p(a ≤ X ≤ b) = F (b)− F (a).

We introduce the following lemmas that will be useful in Theorem 3.5 and Theorem 3.8, which are
about addition, linear transformation, and marginalization involving mixtures of distributions.
Lemma A.1. Let X,Y be two independent random variables with corresponding mixture distribu-
tions ϕX(w) =

∑I
i=1 αifi(w) and ϕY (w) =

∑J
j=1 βjdj(w). Then Z = X + Y still follows a

mixture distribution.

Proof. By linearity of expectation the moment generating function of X (and analogously Y) has the
following form

MX(t) = E[et
Tw] =

∫
et

TwϕX(w)dw (18)

=

∫
et

Tw
I∑

i=1

αifi(w)dw (19)

=

I∑
i=1

αiMXi(t) (20)

where Xi is the r.v. corresponding to a component of the distribution. Using the fact that the moment
generating function of Z = X + Y is given by MZ(t) = MX(t)MY (t), we have that

MZ(t) =
(I∑

i=1

αiMXi
(t)
)(J∑

j=1

βjMYj
(t)
)
=

I∑
i=1

J∑
j=1

αiβj MXi
(t)MYj

(t)︸ ︷︷ ︸
Zij=Xi+Yj

. (21)

17

Therefore, Z follows a mixture model with IJ components where each component follows the
distribution associated with the random variable Zij = Xi + Yj .

Lemma A.2. Let X be a r.v. with multivariate Gaussian mixture distribution ϕX(w) =∑I
i=1 αiN (w;µi,Σi),w ∈ RD. Then Z = ΛX,Λ ∈ RD×D still follows a mixture distribu-

tion.

Proof. Using the change of variable z = Λw we have

ϕZ(w) = ϕX(Λ−1w)|det(Λ−1)| =
I∑

i=1

αiN (Λ−1w;µi,Σi)|det(Λ−1)|. (22)

By expanding the terms, we see that the distribution of Z is still a mixture of distributions of the
following form

ϕZ(w) =

I∑
i=1

αiN (w;Λµi,ΛΣiΛ
T). (23)

Lemma A.3. Let X,Y be two independent random variables with corresponding Gaussian mixtures
of distributions ϕX(w) =

∑I
i=1 αiN (w;µXi

, σ2
Xi

) and ϕY (w) =
∑J

j=1 βjN (w;µYj
, σ2

Yj
). Then

EX [FY (w)] =

∫
FY (w)ϕX(w)dw =

I∑
i=1

J∑
j=1

αiβjΦ

 µXi
− µYj√

σ2
Yj

+ σ2
Xi

 (24)

Proof. It is useful to look at this integral from a probabilistic point of view. In particular, we know
that

p(Y ≤ X|X = w) = p(Y ≤ w) = FY (w) (25)

and that, by marginalizing over all possible values of X,

p(Y ≤ X) =

∫
p(Y ≤ X|X = w)p(X = w)dw =

∫
FY (w)ϕX(w)dw︸ ︷︷ ︸

EX [FY (w)]

. (26)

Therefore, finding the solution corresponds to computing p(Y − X ≤ 0). Because X,Y are
independent, the resulting variable Z = Y −X is distributed as (using Lemma A.1 and Lemma A.2)

pZ(w) =

I∑
i=1

J∑
j=1

αiβjN (w;µYj
− µXi

;σ2
Yj

+ σ2
Xi

) (27)

and hence, using the fact that the c.d.f. of a mixture of Gaussians is the weighted sum of the individual
components’ c.d.f.s:

p(Z ≤ 0) =

I∑
i=1

J∑
j=1

αiβjΦ

 µXi
− µYj√

σ2
Yj

+ σ2
Xi

 . (28)

18

Theorem 3.5. Under assumptions 1,2, Mc′(c, ε) has the following analytical form

p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)
D∏

f=1

Φ

µc′m′f + ε
2 − µcmf√

σ2
cmf + σ2

c′m′f

−Φ

µc′m′f − ε
2 − µcmf√

σ2
cmf + σ2

c′m′f

 .

(29)

Proof. The proof relies on the previous Lemma A.3. We begin by expanding the formula and using
the result of Proposition 3.3. We define the r.v. Zimf ∼ N (w;µimf , σ

2
imf) to write

Ex∼p(x|c′)[Mx(c)] (30)

=

∫
p(c)

|M|∑
m=1

p(m|c)
D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
p(x|c′)dx (31)

= p(c)

∫ (|M|∑
m=1

p(m|c)
D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

)))(|M|∑
m′=1

p(x|m′, c′)p(m′|c′)
)
dx

(32)

p(c)

∫ |M|∑
m=1
m′=1

p(m′|c′)p(m|c)
D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
p(x|m′, c′)dx (33)

= p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)
∫ D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

)) D∏
f=1

p(xf |m′, c′)dx (34)

= p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)
∫

· ·
∫ D∏

f=1

(
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
p(xf |m′, c′)dx (35)

= p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)
D∏

f=1

∫ (
FZcmf

(
xf +

ε

2

)
− FZcmf

(
xf − ε

2

))
p(xf |m′, c′)dxf (36)

= p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)×

×
D∏

f=1

∫

FZcmf

(
xf +

ε

2

)
p(xf |m′, c′)dxf︸ ︷︷ ︸

EZ
c′f

[FZcmf (xf+ ε
2)]

−
∫

FZcmf

(
xf − ε

2

)
p(xf |m′, c′)dxf︸ ︷︷ ︸

EZ
c′f

[FZcmf (xf− ε
2)]

 . (37)

We first note that FZcmf

(
xf + ε

2

)
= FY (xf) where Y follows distribution N (w;µcmf − ε

2 , σ
2
cmf)

(and symmetrically for FZcmf

(
xf − ε

2

)
), so we can apply Lemma A.3 and obtain

p(c)

|M|∑
m=1
m′=1

p(m′|c′)p(m|c)
D∏

f=1

Φ

µc′m′f + ε
2 − µcmf√

σ2
cmf + σ2

c′m′f

−Φ

µc′m′f − ε
2 − µcmf√

σ2
cmf + σ2

c′m′f

 .

(38)

19

Proposition 3.7. Let the first D derivatives of
∑|C|

i=1 Mc′(i) be different from 0 in an open interval
I around ε = 0 and not tending to infinity for ε → 0. Then, under assumptions 1,2, Equation 7 has
the following limits (the first of which requires the assumptions)

lim
ε→0

pc′(c, ε) =

p(c)
∑|M|

m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1 ϕZcmm′f (0)∑|C|
i p(i)

∑|M|
m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1 ϕZimm′f (0)
lim
ε→∞

pc′(c, ε) = p(c)

(39)

where Zimm′f has distribution N (·;−aimm′f , b
2
imm′f),

aimm′f = 2(µc′m′f − µimf) and bimm′f = 2
√
σ2
imf + σ2

c′m′f .

Proof. The second limit follows from limx→+∞ Φ(x) = 1 and limx→−∞ Φ(x) = 0. As regards the
first limit, we first expand the terms

lim
ε→0

pc′(c, ε) = lim
ε→0

p(c)
∑|M|

m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1

(
Φ(

ε+acmm′f
bcmm′f

)−Φ(
−ε+acmm′f

bcmm′f
)
)

∑|C|
i p(i)

∑|M|
m=1
m′=1

p(m|i)p(m′|c′)
∏D

f=1

(
Φ(

ε+aimm′f
bimm′f

)−Φ(
−ε+aimm′f

bimm′f
)
) ,
(40)

where aimm′f = 2(µc′m′f − µimf) and bimm′f = 2
√
σ2
imf + σ2

c′m′f ∀i ∈ C to simplify the

notation. By defining Zimm′f ∼ N (·;−aimm′f , b
2
imm′f), we can rewrite the limit as

lim
ε→0

p(c)
∑|M|

m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1 FZcmm′f (ε)− FZcmm′f (−ε)∑|C|
i p(i)

∑|M|
m=1
m′=1

p(m|i)p(m′|c′)
∏D

f=1 FZimm′f (ε)− FZimm′f (−ε)
(41)

= lim
ε→0

p(c)
∑|M|

m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1 dcmm′f (ε)∑|C|
i p(i)

∑|M|
m=1
m′=1

p(m|i)p(m′|c′)
∏D

f=1 dimm′f (ε)
, (42)

Both the numerator and denominator tend to zero in the limit, so we try to apply L’Hôpital’s rule,
potentially multiple times.

For reasons that will become clear soon, we show that the limit of the first derivative of each term in
the product is not zero nor infinity:

lim
ε→0

d
(1)
imm′f (ε) = lim

ε→0

(
ϕZimm′f (ε) + ϕZimm′f (−ε)

)
= 2ϕZimm′f (0), (43)

In addition, let us consider the n-th derivative of the product of functions (by applying the generalized
product rule): (D∏

f=1

dimm′f (ε)
)(n)

=
∑

j1+···+jD=n

(
n

j1, . . . , jD

) D∏
f=1

d
(jf)
imm′f (ε) (44)

and we note that, as long as n < D there will exist an assignment to jf = 0 ∀f in the summation,
and thus the limit of each product will always tend to 0 when ε goes to 0 since the individual terms
cannot tend to infinity for our assumptions. However, when we take the D-th derivative, there exists
one term in the summation that does not go to 0 in the limit, which is(

D

1, . . . , 1

) D∏
f=1

d
(1)
imm′f (ε) = D!

D∏
f=1

d
(1)
imm′f (ε) (45)

lim
ε→0

(
D

1, . . . , 1

) D∏
f=1

d
(1)
imm′f (ε) = 2DD!

D∏
f=1

ϕZimm′f (0)(ε) (46)

20

Therefore, by applying the L’Hôpital’s rule D times, we obtain

lim
ε→0

p(c)
∑|M|

m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1 dcmm′f (ε)∑|C|
i p(i)

∑|M|
m=1
m′=1

p(m|i)p(m′|c′)
∏D

f=1 dimm′f (ε)
(47)

=

p(c)
∑|M|

m=1
m′=1

p(m|c)p(m′|c′)
∏D

f=1 ϕZcmm′f (0)∑|C|
i p(i)

∑|M|
m=1
m′=1

p(m|i)p(m′|c′)
∏D

f=1 ϕZimm′f (0)
. (48)

However, to be valid, L’Hôpital’s rule requires that the derivative of the denominator never goes to 0
for points different from ε = 0. This is part of our assumptions, hence we conclude the proof.

For n = 1 we can show that this last requirement holds as d(1)imm′f (ε) > 0 ∀ε, dimm′f (ε) ≥ 0, and
dimm′f (ε) = 0 if and only if ε = 0. In fact,

(D∏
f=1

dimm′f (ε)
)(1)

=
∑

j1+···+jD=1

D∏
f=1

d
(jf)
imm′f (ε) (49)

is a sum over terms that are all greater than 0 for ε ̸= 0.

Analytical form of the n-th derivative of
∑|C|

i=1 Mc′(i) To verify if the hypotheses of Proposition
3.7 is true given the parameters of all features’ distributions, one could compute the n-th derivative of
the denominator w.r.t. ε and check that it is not zero around 0. We start again from

(D∏
f=1

dimm′f (ε)
)(n)

=
∑

j1+···+jD=n

(
n

j1, . . . , jD

) D∏
f=1

d
(jf)
imm′f (ε) (50)

and we proceed using the fact that the n-th derivative of the standard normal distribution S ∼ N (0, 1)
has a well-known form in terms of the n-th (probabilist) Hermite polynomial Hen(x). We note the
following equivalence:

ϕZimm′f (w) =
1

bimm′f
ϕS(

w + aimm′f

bimm′f
), (51)

hence we can write

d
(n)
imm′f (ε) = (d

(1)
imm′f (ε))

(n−1) = (ϕZimm′f (ε) + ϕZimm′f (−ε))(n−1) (52)

= (ϕZimm′f (ε))
(n−1) + (ϕZimm′f (−ε))(n−1) (53)

= (
1

bimm′f
ϕS(

ε+ aimm′f

bimm′f
))(n−1) (54)

+ (
1

bimm′f
ϕS(

−ε+ aimm′f

bimm′f
))(n−1) (55)

=
1

bimm′f

(
(ϕS(

ε+ aimm′f

bimm′f
))(n−1) + (ϕS(

−ε+ aimm′f

bimm′f
))(n−1)

)
(56)

=
1

bimm′f

(
(N (

ε+ aimm′f

bimm′f
; 0, 1))(n−1) + (N (

−ε+ aimm′f

bimm′f
; 0, 1))(n−1)

)
(57)

=
1

bimm′f

(
(−1)n−1He

n−1
(
ε+ aimm′f

bimm′f
)ϕS(

ε+ aimm′f

bimm′f
)
)
+

+ (−1)n−1Hen−1(
−ε+ aimm′f

bimm′f
)ϕS(

−ε+ aimm′f

bimm′f
)

)
. (58)

21

We use this result in the expansion of Equation 50

∑
j1+···+jD=n

(
n

j1, . . . , jD

) D∏
f=1

d
(jf)
imm′f (ε) (59)

=
∑

j1+···+jD=n

(
n

j1, . . . , jD

) ∏
jf>0

f=1...D

d
(jf)
imm′f (ε)

∏
jf=0

f=1...D

dimm′f (ε). (60)

However, we can readily see that computing the derivative for a single ε has combinatorial complexity,
which makes the application of the above formulas practical only for small values of D.

Class Separability Analysis of Section 3.2 We now present a result that will help us compute the
SED divergence between two Gaussian mixtures of distributions.

Lemma A.4. Let X,Y be two independent random variables with corresponding Gaussian
mixture distributions ϕX(w) =

∑I
i=1 αifXi

(w) =
∑I

i=1 αiN (w;µX
i ,ΣX

i) and ϕY (w) =∑J
j=1 βjfYj (w) =

∑J
j=1 βjN (w;µY

j ,Σ
Y
j), w ∈ RD. Then the SED divergence between ϕX(w)

and ϕY (w) can be computed as

SED(ϕX , ϕY) =

I∑
i=1

I∑
j=1

αiαjAi,j +

J∑
i=1

J∑
j=1

βiβjBi,j − 2

I∑
i=1

J∑
j=1

αiβjCi,j , (61)

where (62)

Ai,j = N (µX
i ;µX

j , (ΣX
i +ΣX

j)) (63)

Bi,j = N (µY
i ;µ

Y
j , (Σ

Y
i +ΣY

j)) (64)

Ci,j = N (µX
i ;µY

j , (Σ
X
i +ΣY

j)). (65)

Proof.

SED(ϕX , ϕY) =

∫
(ϕX(w)− ϕY (w))2dw (66)

SED(ϕX , ϕY) =

∫ I∑
i=1

αifXi(w)−
J∑

j=1

βjfYj (w)

2

dw (67)

=

I∑
i=1

I∑
j=1

αiαj

∫
fXi

(w)fXj
(w)dw +

J∑
i=1

J∑
j=1

βiβj

∫
fYi

(w)fYj
(w)dw (68)

− 2

I∑
i=1

J∑
j=1

αiβj

∫
fXi

(w)fYj
(w)dw. (69)

Finally, we can compute the integral of the product of two Gaussians as follows (Section 8.1.8 of
[53]) ∫

N (w;µ1,Σ1)N (w;µ2,Σ2)dw = N (µ1;µ2, (Σ1 +Σ2)) (70)

to obtain the desired value.

Proposition 3.8. Under assumptions 1,3, let us assume that the entity embeddings of a 1-layer
DGN applied on an artificially built k-NN graph follow the distribution of Equation 10. Then the
Squared Error Distances SED(p(h|c), p(h|c′)) and SED(p(x|c), p(x|c′)) have analytical forms.

Proof. First, we have to show how we can compute the conditional probabilities p(h|c) and p(h|c′),
and then we derive the analytical computation of the SED divergence to verify the inequality in a
similar manner of Helén and Virtanen [33].

22

We first work out the explicit form of p(h|c), by marginalizing out x:

p(h|c) =
∫ |M|∑

m

p(h|x)p(x|m, c)p(m|c)dx (71)

=

|M|∑
m

p(m|c)
∫

p(h|x)p(x|m, c)dx (72)

=

|M|∑
m

p(m|c)
∫

N (h;x,Λε)N (x;µmc,Σmc)dx (73)

=

|M|∑
m

p(m|c)
∫

N (h− x;0,Λε)N (x;µmc,Σmc)dx︸ ︷︷ ︸
Gaussian convolution

(74)

=

|M|∑
m

p(m|c)N (h;µmc,Σmc +Λε). (75)

Therefore, the distribution resulting from the k-NN neighborhood aggregation will change the input’s
variance in a way that is inversely proportional to the number of neighbors. In the limit of k → ∞
and finite σε, it follows that p(h|c) = p(x|c). Since p(h|c) still follows a mixture of distributions
of known form, we note that a repeated aggregation of the neighborhood aggregation mechanism
(without any learned transformation) would only increase the values of the covariance matrix. In turn,
this would make the distribution spread more and more, causing what is known in the literature as the
oversmoothing effect (see Section 2).

Since both Xc and Hc follow a Gaussian mixture distribution, we apply Lemma A.4 to obtain a
closed-form solution and be able to evaluate the inequality. In particular

SED(ϕXc
, ϕXc′) = (76)

=

|M|∑
m=1
m′=1

p(m|c)p(m′|c)N (µcm;µcm′ ,Σcm +Σcm′) (77)

+

|M|∑
m=1
m′=1

p(m|c′)p(m′|c′)N (µc′m;µc′m′ ,Σc′m +Σc′m′) (78)

− 2

|M|∑
m=1
m′=1

p(m|c)p(m′|c′)N (µcm;µc′m′ ,Σcm +Σc′m′). (79)

and

SED(ϕHc
, ϕHc′) = (80)

=

|M|∑
m=1
m′=1

p(m|c)p(m′|c)N (µcm;µcm′ ,Σcm +Σcm′ + 2Λε) (81)

+

|M|∑
m=1
m′=1

p(m|c′)p(m′|c′)N (µc′m;µc′m′ ,Σc′m +Σc′m′ + 2Λε) (82)

− 2

|M|∑
m=1
m′=1

p(m|c)p(m′|c′)N (µcm;µc′m′ ,Σcm +Σc′m′ + 2Λε). (83)

23

As an additional remark, if SED(ϕHc , ϕHc′) > SED(ϕXc , ϕXc′), points in the DGN’s latent space
will be easier to classify than those in the input space because the former pair of distributions are
more separable than the latter.

We also observe that p(h|c) is a mixture of Gaussians that differs from p(x|c)only in the higher
variance of the individual Gaussian components. In other words, the distribution of p(h|c) looks
“flatter” than p(x|c). At least in a one or two-dimensional space, flatter distributions p(h|c) and
p(h|c′) should therefore increase the overlap (and therefore decrease the SED) compared to the SED
in the original space. This intuition, despite its simplicity, is unfortunately hard to prove for technical
reasons, for instance the dependence of the distance value on the specific parameters µ and Σ.

A.4 Impact of the Metric in the Construction of k-NN Graphs

To judge how much the results might change if we used a different metric, we test the cosine similarity
as done in [56]. We note that the cosine distance is less expressive than the Euclidean distance as it
does not consider the magnitude of values, and that results in overall worse performances. DGNs
typically work in the Euclidean space when aggregating neighbors, hence the homophily assumption
can be imposed - to a certain extent - only by computing nearest neighbors in terms of Euclidean
distance. In addition, building k-NN graphs using the Euclidean distance criterion has an easy
interpretation in terms of “how similar the attributes of adjacent nodes are”. We observe that the
results below still agree with our theoretical intuitions and empirical results.

Table 5: Node classification mean and standard deviation results for a structure-agnostic baseline
(MLP) compared to graph machine learning methods applied to artificially built k-NN graphs. We
performed model selection w.r.t. the F1 score, but we also include the accuracy for completeness.
Here, k-NN graphs are built using the cosine similarity as metric.

MLP sDGN GIN GCN
F1 ACC F1 ACC F1 ACC F1 ACC

Abalone 0.55±0.02 55.5±1.5 0.55±0.01 55.5±0.9 0.55±0.03 55.2±1.8 0.55±0.02 55.1 (1.9)
Adult 0.70±0.02 77.6±1.7 0.64±0.01 79.0±0.6 0.69±0.03 79.5±0.6 0.53±0.07 76.4 (0.6)
DryBean 0.78±0.04 77.4±4.0 0.77±0.06 77.0±5.0 0.79±0.02 78.2±2.0 0.78±0.06 78.2 (5.3)
eGrid 0.95±0.01 95.6±0.6 0.84±0.01 85.8±0.9 0.93±0.01 93.9±0.8 0.81±0.01 82.6 (1.4)
Isolet 0.95±0.01 95.4±0.5 0.93±0.01 92.7±1.0 0.95±0.01 94.8±1.0 0.90±0.05 90.6 (4.1)
Musk 0.99±0.01 99.3±0.3 0.96±0.01 98.0±0.6 0.93±0.04 96.2±2.5 0.93±0.04 97.1 (0.7)
Occupancy 0.99±0.01 98.9±0.4 0.99±0.01 98.6±0.3 0.99±0.01 98.9±0.3 0.95±0.1 97.6 (4.8)
Waveform 0.85±0.02 85.5±1.7 0.84±0.01 84.0±1.4 0.84±0.01 84.1±1.6 0.82±0.03 82.6 (2.3)
Cora 0.71±0.04 74.3±2.4 0.71±0.03 74.1±2.7 0.72±0.02 75.5±1.8 0.72±0.03 75.2 (2.3)
Citeseer 0.69±0.02 71.8±1.9 0.69±0.02 71.8±1.8 0.70±0.02 73.7±1.3 0.69±0.02 71.7 (2.4)
Pubmed 0.87±0.01 87.6±0.7 0.84±0.01 83.8±0.7 0.86±0.01 86.7±0.8 0.84±0.01 83.7 (0.6)

24

A.5 Analysis of CCNS approximation’s quality

In the figure below, we visualize how the true CCNS gets closer to the MC approximation when
the number of neighbors k increases for a random data distribution with 5 classes. The choice of
the ε parameter for the MC estimation of the CCNS has a marginal impact here. This behavior is
expected, because as k increases we get a better approximation of the posterior class distribution in
the hypercube around each point, which is the one we computed in Section 3.1. When k is too small,
the empirical (true) CCNS might be more unstable and dataset-dependent.

0 1 2 3 4
True CCNS for k=5

0
1

2
3

4

0.59 0.6 0.59 0.59 0.59
0.6 0.61 0.6 0.61 0.61
0.59 0.6 0.59 0.61 0.6
0.59 0.61 0.61 0.56 0.6
0.59 0.61 0.6 0.6 0.58

0 1 2 3 4
True CCNS for k=25

0
1

2
3

4

0.38 0.39 0.39 0.39 0.37
0.39 0.39 0.39 0.4 0.39
0.39 0.39 0.39 0.42 0.39
0.39 0.4 0.42 0.35 0.39
0.37 0.39 0.39 0.39 0.34

0 1 2 3 4
True CCNS for k=50

0
1

2
3

4

0.34 0.35 0.35 0.35 0.34
0.35 0.35 0.35 0.36 0.36
0.35 0.35 0.35 0.38 0.35
0.35 0.36 0.38 0.3 0.36
0.34 0.36 0.35 0.36 0.3

0 1 2 3 4
True CCNS for k=100

0
1

2
3

4

0.31 0.32 0.32 0.33 0.31
0.32 0.33 0.33 0.34 0.33
0.32 0.33 0.32 0.36 0.32
0.33 0.34 0.36 0.28 0.34
0.31 0.33 0.32 0.34 0.28

0 1 2 3 4
MC estimate of CCNS

0
1

2
3

4

0.28 0.3 0.29 0.3 0.28
0.29 0.31 0.3 0.32 0.31
0.29 0.3 0.28 0.32 0.29
0.3 0.32 0.32 0.25 0.31
0.29 0.31 0.29 0.31 0.25

Figure 5: Comparison of the true CCNS for varying values of k and the MC approximation according
to our theory for a random initialization of a 5-class data model.

25

A.6 Best Configurations and Ablation Studies

In the figure below, we show which are the best k and ε values picked by the models trained for the
qualitative experiments.

0 1 2 3 4 5
k

0

10

20

30

Co
un

t

2 4 6 8 10 12 14 16
ε

0

10

20

30

Co
un

t

Figure 6: We show the histograms of the learned k and ε for the different configurations of Table 4.
It appears that lower values of both parameters are preferred by the trained models.

Analysis of Chosen Hyper-parameters For completeness, in the following we display the best k,
number of layers, and number of hidden units chosen by the different families of models on each
dataset of Table 1. We recall that for each dataset and model there are 10 best configurations due to
the use of a 10-fold cross validation for risk assessment [22]. We did not find any significant pattern
except for SDGN preferring lower values of k and the DGNs often choosing at least 2 convolutional
layers.

1 3 5 10
k

0

1

2

3

4

5

6

Co
un

t

abalone
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

10

Co
un

t

adult
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

10

Co
un

t

drybean
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

10

Co
un

t

electricalgrid
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

10

Co
un

t

isolet

model
MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

10

Co
un

t

musk
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

1

2

3

4

5

Co
un

t

occupancy
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

Co
un

t

waveform
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

1

2

3

4

5

6

Co
un

t

cora
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

1

2

3

4

5

Co
un

t

citeseer
model

MLP
sDGN
GIN
GCN

1 3 5 10
k

0

2

4

6

8

10

Co
un

t

pubmed
model

MLP
sDGN
GIN
GCN

Figure 7: Histograms of the k chosen by each model on the different datasets during a 10-fold cross
validation for risk assessment.

26

1 2 3
layers

0

2

4

6

8

Co
un

t

abalone
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

10

Co
un

t

adult
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

10

Co
un

t

drybean
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

10

Co
un

t

electricalgrid
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

10

Co
un

t

isolet
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

Co
un

t

musk
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

Co
un

t

occupancy
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

1

2

3

4

5

6

Co
un

t

waveform
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

10

Co
un

t

cora
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

Co
un

t

citeseer
model

MLP
sDGN
GIN
GCN

1 2 3
layers

0

2

4

6

8

10

Co
un

t

pubmed
model

MLP
sDGN
GIN
GCN

Figure 8: Histograms of the number of layers chosen by each model on the different datasets during a
10-fold cross validation for risk assessment.

27

32 64 128
hidden units

0

2

4

6

8

10

Co
un

t

abalone
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

2

4

6
Co

un
t

adult
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

2

4

6

Co
un

t

drybean
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

1

2

3

4

5

6

Co
un

t

electricalgrid
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

2

4

6

8

Co
un

t

isolet
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

1

2

3

4

5

6

Co
un

t

musk
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

2

4

6

Co
un

t

occupancy
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

1

2

3

4

5

6

Co
un

t

waveform
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

2

4

6

8

Co
un

t

cora
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

1

2

3

4

5

6

Co
un

t

citeseer
model

MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

1

2

3

4

5

6

Co
un

t

pubmed
model

MLP
sDGN
GIN
GCN

Figure 9: Histograms of the hidden units chosen by each model on the different datasets during a
10-fold cross validation for risk assessment.

28

Ablation Study We now provide an ablation study of the validation performances of the models
during the model selection phase (i.e., across all possible configurations). We show the ablations
for the most important architectural choices of the hyper-parameters. Also in this case, a lower k is
associated with better performances, but there does not seem to be marked improvements when using
more than 1 graph convolutional layer.

0 1 3 5 10
k

20

30

40

50

60

70

vl
_a
cc

abalone

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

65

70

75

80

85

vl
_a
cc

adult

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

0

20

40

60

80

100

vl
_a
cc

drybean
model

MLP
sDGN
GIN
GCN

0 1 3 5 10
k

40

60

80

100

vl
_a
cc

electricalgrid

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

40

60

80

100

vl
_a
cc

isolet

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

60

70

80

90

100

vl
_a
cc

musk

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

70

80

90

100

vl
_a
cc

occupancy

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

40

60

80

vl
_a
cc

waveform

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

55

60

65

70

75

80

85

vl
_a
cc

cora

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

55

60

65

70

75

80

vl
_a
cc

citeseer

model
MLP
sDGN
GIN
GCN

0 1 3 5 10
k

77.5

80.0

82.5

85.0

87.5

90.0

vl
_a
cc

pubmed

model
MLP
sDGN
GIN
GCN

Figure 10: Ablation study for the k chosen by each model on the different datasets. We report the
validation performances computed during model selection for all configurations tried.

29

1 2 3
layers

10

20

30

40

50

60

vl
_a

cc

abalone

model
MLP
sDGN
GIN
GCN

1 2 3
layers

65

70

75

80

85

vl
_a

cc

adult

model
MLP
sDGN
GIN
GCN

1 2 3
layers

0

20

40

60

80

100

vl
_a

cc

drybean

model
MLP
sDGN
GIN
GCN

1 2 3
layers

40

60

80

100

vl
_a

cc

electricalgrid

model
MLP
sDGN
GIN
GCN

1 2 3
layers

40

60

80

100

vl
_a

cc

isolet

model
MLP
sDGN
GIN
GCN

1 2 3
layers

60

70

80

90

100

vl
_a

cc

musk

model
MLP
sDGN
GIN
GCN

1 2 3
layers

70

80

90

100

vl
_a

cc

occupancy

model
MLP
sDGN
GIN
GCN

1 2 3
layers

20

40

60

80

100

vl
_a

cc

waveform

model
MLP
sDGN
GIN
GCN

1 2 3
layers

60

65

70

75

80

85

vl
_a

cc

cora

model
MLP
sDGN
GIN
GCN

1 2 3
layers

55

60

65

70

75

80

vl
_a

cc

citeseer

model
MLP
sDGN
GIN
GCN

1 2 3
layers

77.5

80.0

82.5

85.0

87.5

90.0

vl
_a

cc

pubmed

model
MLP
sDGN
GIN
GCN

Figure 11: Ablation study for the number of layers chosen by each model on the different datasets.
We report the validation performances computed during model selection for all configurations tried.

30

32 64 128
hidden units

20

30

40

50

60

70

vl
_a

cc

abalone

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

65

70

75

80

85
vl

_a
cc

adult

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

0

20

40

60

80

100

vl
_a

cc

drybean

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

40

60

80

100

vl
_a

cc

electricalgrid

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

40

60

80

100

vl
_a

cc

isolet

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

60

70

80

90

100

vl
_a

cc

musk

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

70

80

90

100

vl
_a

cc

occupancy

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

20

40

60

80

vl
_a

cc

waveform

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

55

60

65

70

75

80

85

vl
_a

cc

cora

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

55

60

65

70

75

80

vl
_a

cc

citeseer

model
MLP
sDGN
GIN
GCN

32 64 128
hidden units

77.5

80.0

82.5

85.0

87.5

90.0

vl
_a

cc

pubmed

model
MLP
sDGN
GIN
GCN

Figure 12: Ablation study for the hidden units chosen by each model on the different datasets. We
report the validation performances computed during model selection for all configurations tried.

31

	Introduction
	Related Work
	Methodology
	Analytical Computation of the CCNS for Nearest Neighbor Graphs
	Class Separability Induced by DGNs on a k-NN Graph
	Limitations and Future Directions

	Experiments
	Empirical Results
	Conclusions
	Appendix
	Dataset Statistics
	Hyper-Parameters Tried
	Proofs
	Impact of the Metric in the Construction of k-NN Graphs
	Analysis of CCNS approximation's quality
	Best Configurations and Ablation Studies

