
OROS: Online Operation and Orchestration of

Collaborative Robots using 5G

Arnau Romero∗, Carmen Delgado∗, Lanfranco Zanzi†, Xi Li†, Xavier Costa-Pérez∗†‡
∗i2CAT Foundation, Barcelona, Spain. Email:{name.surname}@i2cat.net,

†NEC Laboratories Europe, Heidelberg, Germany. Email:{name.surname}@neclab.eu,
‡ ICREA, Barcelona, Spain.

Abstract—The 5G mobile networks extend the capability for
supporting collaborative robot operations in outdoor scenarios.
However, the restricted battery life of robots still poses a major
obstacle to their effective implementation and utilization in real
scenarios. One of the most challenging situations is the execution
of mission-critical tasks that require the use of various on-
board sensors to perform simultaneous localization and mapping
(SLAM) of unexplored environments. Given the time-sensitive na-
ture of these tasks, completing them in the shortest possible time
is of the highest importance. In this paper, we analyze the benefits
of 5G-enabled collaborative robots by enhancing the intelligence
of the robot operation through joint orchestration of Robot
Operating System (ROS) and 5G resources for energy-saving
purposes, addressing the problem from both offline and online
manners. We propose OROS, a novel orchestration approach that
minimizes mission-critical task completion times as well as overall
energy consumption of 5G-connected robots by jointly optimizing
robotic navigation and sensing together with infrastructure re-
sources. We validate our 5G-enabled collaborative framework by
means of Matlab/Simulink, ROS software and Gazebo simulator.
Our results show an improvement between 3.65% and 11.98%
in exploration task by exploiting 5G orchestration features for
battery life extension when using 3 robots.

Index Terms—5G, Orchestration, Robotics, Optimization

I. INTRODUCTION

Robots have been designed to interact with unknown envi-

ronments and act on behalf of humans to minimize the risk

of accidents or injuries. Thanks to their rapid deployment

and relatively low cost, ground robots as well as Unmanned

Aerial Vehicles (UAVs) have recently emerged as alternatives

to address emergency and mission-critical scenarios [1] [2].

Such use-cases drive the evolution of simple remote-controlled

robots into moving platforms equipped with dedicated oper-

ating systems, advanced computing capabilities and multiple

communication modules, to support autonomous navigation

and robot control tasks, which can be also aided by Artificial

Intelligence (AI) based solutions to perform more accurate

decisions thanks to real-time multi-sensor data streams.

Simultaneous localization and mapping (SLAM) and object

recognition are only some example of robot applications that

may be needed during rescue operations and deployment of

first-aid support [3]. Most of the modern solutions require the

setup of dedicated local networks, e.g., WiFi-based, which

limits the applicability of robot technology to only indoor

environments [4]. However, in outdoor environments, the WiFi

technology can hardly offer high reliability, availability and

low-latency requirements of modern robotic applications.

In this context, the next generation of mobile networks (5G)

is envisioned as a key-enabler to provide the outdoor wireless

communication and enhance the autonomy of robotic applica-

tions [5]. The ubiquitous connectivity, high bandwidth and the

low latency access provided by the modern mobile technolo-

gies, together with the possibility to seamlessly exploit multi-

access edge computing platforms (MEC) deployed at the edge

of the networks, and cloud computing to host processing and

analytic services as virtual or container-based instances, enable

unprecedent levels of flexibility in the deployment of robotic

applications which may efficiently off-load computing tasks to

the edge and alleviate their energy consumption [6] [7]. In the

5G context, an orchestrating entity acts as a mediator in charge

of guaranteeing the most efficient use of the infrastructure

resources, while pursuing the satisfaction of heterogeneous

communication requirements. Similarly, an orchestration entity

can be adopted in the robot domain to control the multitude

of operational modules and sensors installed on the on-

board robot platform, e.g., to optimize energy consumption

and resource utilization. However, in the state-of-the-art both

orchestration entities work independently, with little to no

awareness of each other during the operational phases. On the

one hand, the robot domain assumes ubiquitous and unlimited

resource availability, both from the networking and cloud

resource perspective, which leads to performance drops when

dealing with wireless and virtualized environments, especially

in heterogeneous multi-robot scenarios. On the other hand,

the 5G domain operates without knowledge of the actual

resource requirements from the robot domain, mainly by

over-provisioning the resources. This introduces inefficient

networking resource usage and, perhaps more importantly,

waste of energy in the robots, making it hard for such energy-

constrained devices to fulfill their tasks.

In our previous work [8], we propose to combine the

orchestration logic from the network infrastructure and the

robot domains. We addressed the problem from an offline

optimization perspective, enabling information exchange be-

tween the robots and the hosting infrastructure. In this way, not

only energy-aware decisions performed in the robotic domain

may be tuned according to real-time infrastructure conditions,

but also infrastructure resources can be re-configured to meet

robot communication and energy requirements in a dynamic

and efficient manner. Despite providing significant insights on

the achievable energy savings, the offline approach requires

assumptions, e.g., a-priori knowledge on the position of the

obstacles, which may be unfeasible in realistic scenarios. To

fill this gap, in this work we extend our previous framework

towards an online approach, allowing OROS to operate only

using information collected by the robots in real-time. To

further validate our proposal, we also include a more accurate

battery discharge model, operate the overall robot software

stack in ROS, and make use of the Gazebo simulator to

reproduce realistic scenarios. To do so, we use two different

machines, one running Matlab/Simulink with the OROS real-

time orchestrator, and the other running as robot client with

the Gazebo simulator.

The main contributions of this paper include:

• We design a framework for the deployment of robotic

applications with the 5G infrastructure, defining the in-

terfaces and the interactions between the proposed joint

orchestration logic with the individual robot orchestrator

and the 5G orchestrator.

• We propose an optimization approach combining the

orchestration of the 5G mobile infrastructure including

mobile edge jointly with the energy-aware optimization of

the on-board robot sensor applications, considering both

offline and online solving strategies.

• We evaluate our proposed approach in ideal conditions,

showcasing the theoretical achievable gains deriving from

the joint orchestration of the 5G infrastructure and robot

applications, both in terms of exploration time and result-

ing energy savings.

• We finally extend our study to non-ideal conditions,

adopting state-of-the art emulation tools and accounting

for non-linear battery discharge rates in robots as well as

variable 5G New Radio simulated communication link,

identifying the main performance gaps.

The remainder of the paper is structured as follows. Sec. II

summarizes related works in the field. Sec. III presents the

main building blocks of our architecture and describes the in-

teraction among the different modules. Sec. IV formulates our

optimization problem, detailing our model assumptions and

solving strategies. Sec. V validates the design principles of our

solution by means of a comprehensive simulation campaign in

ideal and realistic conditions, including a non-linear dynamic

battery discharge rates and 5G wireless communication link.

Finally, Sec. VI concludes this paper and discusses future

works.

II. RELATED WORK

Several works in the literature investigate the adoption of

mobile networks to control robots in outdoor scenarios. In [9]

the authors propose a framework for the offloading of time-

critical and computational exhaustive operations onto a dis-

tributed node architecture, where the communication between

the robot and the cloud server is done via 5G.

Despite offloading computational intensive task would help

robots to save energy, in realistic environments the limited

energy availability provided by on-board batteries still rep-

resents a major limitation. Ideally, robots would require the

largest batteries in order to extend their mobility range. At

the same time, heavier batteries would impact on their energy

consumption rate, thus introducing a design trade-off [10].

Swanborn et al. identify robot navigation as the main

energy consumer [11] at runtime. Additionally, they identify

secondary sources of energy consumption, such as inefficient

hardware, inefficient management algorithms, idle times, oper-

ational inefficiencies (e.g., poor quality software that leads to

unnecessary stops and/or turns, as well as sharp acceleration

and deceleration), processing energy, and finally, unnecessary

communication and wasting of sensor data acquisition. We

highlight that our solution will positively affect the last two

drawbacks.

To optimize the exploration of unknown areas, several

energy-aware management schemes have been proposed in the

literature. [12] proposes an approach for energy efficient path

planning during autonomous mobile robot exploration. The

idea is for a unique robot to efficiently explore the environment

and periodically return to the starting point of the exploration

for recharging its battery. The periodicity depends on an

adaptive threshold that concurrently considers the movement

of the robot, its power consumption and the current state of

the environment. The authors focus on minimizing the overall

travel path in order to minimize the energy consumption.

Since exploring an area poses hard limits in a single robot

settings, in their follow-up work they extended the idea to

teams of coordinated robots sharing a limited number of

Charging Points (CPs) while exploring a structured, unknown

environment with unknown obstacles. The objective in this

case aims at exploring the area as fast as possible [13]. Since

it is infeasible to pre-compute an optimized schedule due to

a limited time horizon, an energy-aware planner is used for

adaptive decision-making on when and where to recharge.

However, their results are limited to numerical simulations.

Similarly, Benkrid et al. investigate the problem of multi-

robot exploration in unknown environments. In their work,

they propose a decentralized coordination approach to mini-

mize the exploration time while considering the total motion

energy saving of the mobile robots [14]. The exploration target

is defined as a segment of the environment including the

frontiers between the unknown and the explored areas. Each

robot evaluates its relative rank, and compares with the other

robots of the fleet, while considering the energy consumption

to reach this exploration target. As a result, the robot is

assigned to the segment for which it has the lowest rank.

They evaluate their proposal through simulation experiments

as well as ROS-enabled robots. However, inaccuracies during

the robot localization and the map generation are not consid-

ered. Additionally, they only consider scenarios with unlimited

energy availability or limited energy without the possibility

of recharging. In [15] the authors consider a mobile edge

cloud planner using TCP/IP and 5G emulation to provide a

navigation plan for indoor rechargeable robots in industrial

scenarios. They consider both cloud-based and robot on-

board path planning, comparing the two approaches in terms

of communication and control loop delay, but limiting their

TABLE I: Comparison of Related Works on Robot Exploration Strategies

Work MultiRobot Evaluation Battery behaviour Charging 5G Channel Conditions

Rappaport et al. [12] 7 Matlab Linear 3 Not considered
Rappaport et al. [13] 3 Numerical Linear 3 Not considered
Benkrid et al. [14] 3 Matlab & Two mobile robots Linear 7 Not considered
Raunholt et al. [15] 7 Mobile robot Realistic non-linear 3 Indoor and Ideal channel conditions
Offline OROS [8] 3 Numerical Linear 3 Constant good channel conditions (simulated)

This work 3 Matlab & Gazebo simulator Realistic non-linear 3 Variable channel quality

analysis to indoor and industrial scenarios. Table I summarizes

and highlights the main differences in robot exploration and

path planning strategies and evaluated scenarios in the works

above and our proposed approach.

Nevertheless, none of the above works have considered

networking aspects in their optimization, nor adopt the NFV

approach for the virtualization and cloud deployments of

robotic applications at the edge/cloud infrastructure so as to

offload some heavy computation tasks from the robots to

the networks. Recent works such as [16] and [17], started

exploring the benefits of adopting 5G and cloud-native de-

ployment in robotic applications exploiting the offloading of

computational tasks to fog, edge or cloud systems to build

a cloud-to-things continuum. Despite their promising results,

the current research is still mainly focusing on virtualization

aspects, and on the development of orchestration platforms to

automate the deployment and allocation of both networking

and computing resources over the 5G infrastructure. However,

such orchestration platforms only control the infrastructure re-

sources, independent of the use of robotic applications, which

neither consider the internal logic of robotic applications nor

decide any actions for the robots. To the best of our knowledge,

this is the first work to jointly consider robot application

operations and infrastructure resource orchestration, pursuing

enhanced robot autonomy, collaboration, and energy consump-

tion optimization.

III. FRAMEWORK OVERVIEW

As depicted in Fig. 1, we consider a set of ground robots

deployed in an unknown outdoor environment, where wireless

communication is provided by means of a 5G network. We

assume a 5G Radio Access Network (RAN) composed by

a set of base stations (gNBs) providing radio coverage over

the area of interest. We also assume the presence of an edge

and a remote cloud platforms, to host robotic applications and

the 5G core functionalities, respectively, running as virtual or

container-based instances within a computing infrastructure.

A non-exhaustive list of robot applications include motion

planning, video processing, etc., while the 5G core accounts

for the set of user authentication, connection setup and mo-

bility management functionalities proper of a mobile network.

We assume the robot controller running in the edge premises,

and rely on the presence of a User Plane Function (UPF) to

seamlessly route the 5G data plane traffic generated by the

robots to the edge platform, therefore favouring low-latency

communication and wider bandwidth availability.

In this work, we focus on a surveillance (public protection

and disaster relief) use-case. Cloud-based robots can perform

OROS

MEC Platform

Edge node physical resources

Central Cloud

Cloud resources

RAN

Computing Infrastr.

Robotic
Apps

5G
Core

Computing Infrastr.

Cloud
Apps

MEC
Services

UPF 5G Orchestrator

5G Infrastructure
Optimization

Module

Charging
station

Joint Robot-5G optimization

Target Area

Robot PlatformRobot PlatformRobot Platform

Physical resources

Computing
Infrast.

Robotic
Apps

5
G

 M
o

d
u

le

Robot OS
statstatstatstatstationionion

d
u

le

Robot Orchestrator

Energy-Aware
Robot Optimization

Module

Fig. 1: Overview of the architectural building blocks.

24/7 security inspections, replacing security personnel, reduc-

ing cost and storing all data needed. They collect video and

images and send them to the cloud for real-time identification

of suspicious people and activity. Similar robots are already

being used at airports and in outdoor rescue scenarios [18].

A. Robot Orchestration

In this paper, we build on the Robot Operating System

(ROS) design and specifications [19] for the control and

orchestration of robots and the onboarding of robotic ap-

plications. ROS is an open-source robotics middleware that

provides common functionality (e.g., read sensor data, navi-

gation, planning, etc.) over general hardware abstraction using

low-level device control. It contains a collection of tools,

libraries, APIs and conventions that simplify the task of

creating complex and robust robot behavior across a variety

of robotic systems [20]. A system built using ROS consists of

a number of processes, potentially on a number of different

hosts, connected at runtime in a peer-to-peer topology. The

ROS topology is supported by a lookup mechanism to allow

processes to find each other in real time. The mechanism is im-

plemented through ROS Master and ROS nodes. While a ROS

Master represents a stateless entity that coordinates the ROS

nodes, the ROS nodes communicate with each other by passing

messages, which are defined with a strictly typed data structure

and published through topics. ROS was initially designed for

standalone robotic applications, with the centralized design for

serving a single robot in a local area network. As such, it is

not suitable in upcoming multi-robot cloud-based applications,

which demand for a distributed environment containing a

variety of networking and cloud resources to be concurrently

coordinated in order to connect and control multiple robots

in potentially distributed areas. These problems have been

partially addressed in the latest development efforts, which led

to the ROS2 release. In its latest releases, ROS mitigates the

issue of real-time topic sharing over a distributed platform by

means of a novel Data Distributed Service (DDS) [21], while

supporting more flexible container-based deployments [22].

In order to seamlessly control robots and related robotic

applications, we envision the Robot Orchestrator entity as

composed by a layered architecture consisting of three layers:

application layer, ROS client layer, and ROS middleware layer.

The application layer hosts a variety of robotic applications

offered with run-time application programming capabilities.

The ROS client layer provides a set of ROS client APIs [23]

based on the built-in ROS client libraries to the developer

interface supporting different languages such as C, C++,

Python. The ROS middleware layer offers a set of APIs [24]

to enable compatibility with different interchangeable low-

level communication protocols, and support distributed data

and service sharing. Through these provided APIs, the robot

orchestrator is able to translate the application logic into a set

of instructions to control and coordinate groups of robots via

ROS command messages dispatched through its Southbound

Interface (SBI).

B. 5G Orchestration

In its simplest definition, a 5G Orchestrator is in charge

of the allocation and management of the 5G infrastructure

resources, including those required to enable robots commu-

nication and transmit their application data, as well as the set

of computing resources to host and run the robotic control

plane applications. For example, a 5G orchestration solution

may decide on the amount of radio resources to be allocated in

order to support both the robot control plane (e.g., navigation

and velocity commands), and the robot data plane (e.g., video

and sensor data) communications. Besides, the robot applica-

tions can be deployed in a virtualized environment, e.g., being

containerized in a local or a cloud computing infrastructure.

In such case, the 5G orchestrator is also in charge of the life-

cycle management of such container-based robotic application

instances, including their on-boarding, instantiation and termi-

nation, automatic scaling and self-healing operations. At last

but not least, the 5G orchestrator can also determine a proper

placement strategy of placing robotic applications which,

thanks to softwarized and cloud-native approaches, may be

deployed locally, i.e., onto the robot computing infrastructure,

or remotely, in edge and cloud platforms, or even adopt-

ing hybrid approaches. Nevertheless, an accurate placement

strategy demands for proactive resource allocation in order

to decide the optimal amount of computing, memory and

storage resources to support the provisioning of various robotic

applications, both onto the robots and edge/cloud platforms.

The 5G orchestrator can be built relying on existing open

source orchestrator platforms such as Open Source MANO

(OSM) or leveraging on open-source orchestration platforms

developed for instance in [25] [26]. From a system architecture

perspective, the 5G orchestrator consists of three layers: ser-

vice layer, orchestration layer and resource layer. The service

layer defines an intent engine to receive and process the

application requests, translating the application requirements

and mapping them to network slices in the form of network

slice template as defined by the 3GPP TS 28.531 [27] and the

network slice resource model (3GPP TS 28.541 [28]). The

orchestration layer consists of a Management and Network

Orchestration (MANO) stack to enforce the 5G policy on the

allocation of resources, placement and life-cycle management

of the robotic applications. These include the instantiation

and releasing of computing resources to host drivers and

processing instances managing the corresponding sensors on

the robots, and their associated applications on a computing

infrastructure when activating or deactivating sensors. On the

bottom is the resource layer. It includes a Virtual Infrastructure

Manager (VIM), which interacts with the underlying physical

infrastructure and offers unified abstractions over the hetero-

geneous set of resources. It carries out monitoring, allocation

and management of resources across the infrastructure and

exposes this information to the orchestrator engine to guide

its tasks.

C. OROS

So far, major effort has been taken in the definition of

orchestrating platforms in each corresponding domain, e.g.,

OSM [29], ONAP [30] in the 5G domain, and ROS [19] in the

robotic environment. However, the orchestration tasks work

independently, without taking consideration of the impact

to each other on required resources to adapt to the robot

requirements in real time, hence leading to inefficient use of

resources and suboptimal robot actions. Traditionally, robot

navigation and path planning processing are performed by

a local robot controller deployed within the same premises.

When considering modern smart multi-robot platforms as

well as novel use-cases brought by the Internet of Robotic

Things (IoRT) paradigm [31], the ability to connect multiple

robots, as well as stream, collect and analyze vast amounts

of robotic data in real-time to powerful computing premises

generally located in the edge/cloud, allows robots to offload

demanding processing tasks to enable smarter robots that can

autonomously adapt to changing conditions more quickly and

accurately. On the one hand, to enable the communication

from the central controller entity to the individual robots, mo-

bile network resources should be allocated and also adapted to

guarantee the bandwidth and latency requirements, especially

when computing offloading is also part of the robot’s task.

On the other hand, enabled by the NFV technologies, modern

robot sensing devices not only produce (and/or consume)

sensor data, but also can be controlled by dedicated software

applications (e.g., based on ROS) running on top of a shared

computing infrastructure. Without a joint orchestration solu-

tion, these software instances will always remain active and

consume the infrastructure resources, impacting on the overall

energy consumption. In this context, centralized edge/cloud

computing platforms and mobile networks act as enablers in

creating distributed robotic systems [32]. At the same time,

decentralized architectures such as fog computing are also

OROS

5G Orchestrator

Joint Robots-5G Orchestration

Robots Orchestrator

Robotic Apps
(e.g., SLAM)

ROS Client Library (rcl)
https://docs.ros2.org/latest/api/rcl/

ROS Abstract Middleware API
[21] https://docs.ros2.org/foxy/api/rmw/

ROS Client Layer

ROS Middleware Layer

ROS Client APIs
[20] http://wiki.ros.org/APIs/

App Layer

Data Distribution System (DDS)
https://www.omg.org/omg-dds-portal/

MANO
[28] OSM, [29] ONAP

VIM

[30] ETSI IFA005

Intent Engine
[24] TS 28.531, [25] TS 28.541

ROS Command Messages

ROS TopicsRobotic Policy Monitoring
Metrics

5G Policy

Service Layer

Orchestration Layer

Resource Layer

http://wiki.ros.org/topic_tools

Fig. 2: Architecture overview of the OROS solution.

being considered, as to achieve a more scalable, efficient

and effective robot resource management [33]. Therefore,

we advocate for the adoption of novel application-oriented

orchestration solutions to guide the overall life-cycle manage-

ment of cloud computing resources, provisioning of dedicated

resources, and context-aware robot motion planning, pursuing

energy savings strategies. To fill this gap, in this work we

propose OROS, a solution for the joint orchestration of the

robotic and 5G ecosystem, to control ROS-driven collaborative

connected robots in 5G networks. The architecture design of

the proposed OROS solution is depicted in Fig. 2. OROS

seamlessly connects the orchestrating entities of the two

domains, and coordinates their operations via a joint Robots-

5G Orchestration module, as the central brain of our solution.

During the operation phase, assuming that the robotic appli-

cations are already instantiated and running, the joint Robots-

5G orchestration module makes high-level joint orchestration

decisions, namely Robotic Policies and 5G Policies, and sends

to each domain-specific orchestrator. It relies on the input

taken from the monitoring metrics exposed by the Robot Or-

chestrator via its Northbound Interface (NBI) (e.g., ROS topics

detailing velocity, location, and power consumption of the

robots), and those exposed by the 5G Orchestrator (e.g., radio

resource availability, and computing resources on the MEC

and robot platforms for running the robotic applications, etc.).

Upon receiving the robotic policy, the Robot Orchestrator is

in charge of reconfiguring the related robotic applications and

translating the required corresponding actions to robot com-

mand messages, through exploiting the provided ROS client

and middleware APIs. Examples of these include instructing

the robot to move towards its new navigation goal, or switch

off a specific sensor to save the energy. In the 5G domain,

once receiving a new 5G policy from the join optimization

module, the Intent Engine will translate the received policy

to update the corresponding network slices based on the new

requirements. The 5G orchestration engine will further process

the slice update request and optimize the reallocation of 5G

resources (e.g., RAN, core, and MEC). This includes the

instantiation and release of the networking and computing

resources associated to the robotic applications, which can be

(de)activated dynamically depending on the decision of OROS.

Moreover, the 5G orchestration decides on the placement and

migration of the robotic applications towards the MEC and

robot platforms. These decisions will be forwarded to the

MANO to execute the operation workflows, and consequently

to the VIM in order to enforce the configurations of the

resources on the robot platforms and the 5G infrastructure

via the SBI following ETSI IFA 005 specifications [34]. In

the following Sec. IV, we detail the energy-aware mathemat-

ical formulation that guides the orchestration decisions while

interacting with the specific domain orchestrators.

IV. PROBLEM FORMULATION

A. Energy-Aware Robot Orchestration Optimization

Hereafter, we present our assumptions, notation and prob-

lem formulation to model the Energy-Aware Optimization

problem. All variables and system parameters are resumed in

Table II to allow faster referencing.

Input variables Let us consider a discrete set of time

instants denoted by the set T = {t1, . . . , t|T |}, and a set

of robot devices R = {r1, . . . , r|R|}. Each robot r ∈ R
is equipped with a rechargeable battery characterized by a

limited capacity Bmax, ∀r ∈ R, whose charging status br,t
varies over time depending on the robot operational activities,

i.e., 0 ≤ br,t ≤ Bmax ∀t ∈ T . Each robot is also equipped

with multiple sensors, such as cameras, Light Detection and

Ranging (LiDAR) sensors, etc.

We assume robots to be deployed in an outdoor environment

covered by a mobile infrastructure, as to enable 5G connectiv-

ity. Without loss of generality, let us define the area of interest

with dimensions A×B meters, and decompose the 2D surface

into a grid G = {ga,b, ∀(a, b) ∈ (A,B)}, where each element

ga,b ∈ G needs to be explored by at least one robot during the

operational phase. The dimension of ga,b, i.e., |ga,b|, depends

on the maximum field of view of the adopted robot camera

and sensors, and we assume such cameras/sensors to be able

to provide a 360◦ view of the surrounding environment.

Each robot needs to receive periodical updates from the

radio interface, as well as upload sensed environmental infor-

mation. For doing so, each robot adapts the Modulation and

Coding Schemes (MCS) used according to the perceived chan-

nel quality, which we assume proportional to the instantaneous

distance of the robot to the serving base station, as detailed

in [8]. We assume the serving base station located at position

(gaBS ,bBS
) ∈ G.

To keep track of the multi-robot exploration, we introduce

et,a,b as a binary variable indicating if the area unit ga,b has

been already explored at time t ∈ T , or not. Notably, the

updates on the discovered area in previous time instants are

inputs for the problem. Such information is shared between

the robots and OROS through update messages. Exploration

of unknown areas may require charging stations to extend

TABLE II: Model parameters

Parameter Definition

T = {t1, . . . , t|T |} Set of time instants; index t refers to time instant tt
R = {r1, . . . , r|R|} Set of robots; index r refers to task rr
A×B Geometric dimensions of the area of interest
G = {ga,b, ∀(a, b) ∈ (A,B)} Grid representing the area to be explored
ma,b,a′,b′ Terrain-velocity constant for moving from position ga,b to ga′,b′

ur,t Binary decision variable indicating if the charging station is being used at time t by robot r
lr,t,a,b Binary decision variable indicating if robot r is in position ga,b at time instant t
et,a,b Binary variable indicating if the unit of area ga,b has been explored at time t
br,t Continuous variable indicating the battery level of robot r at time instant t, where 0 ≤ br,t ≤ Bmax

CR Charging rate provided by the charging station
Pmovea,b,a′,b′

Power consumed by moving from position ga,b to position ga′,b′

PRX Power consumed for receiving
PTX,a,b Power consumed for transmitting
PSEN Power consumed by activating sensors, local data processing and on-robot computing infrastructure

!"#

$%&'()*(
+,&,)-*

.&'(/,0"'/&

((*(*(*(*(

!

"

12(/034&,5-'6

!"

|#$,%#
#$,%

!&

'(

2'(

Fig. 3: Example of robot exploration task solved with multiple
robots.

the operational time of rescue robots. Therefore, we assume

a charging station (CS) located in position (gaCS ,bCS
) ∈ G,

which is known a-priori to all robots, which can be either

available or unavailable (due to an already charging robot) at

a certain time instant. The CS provides a charging rate CR to

recover the robot battery.

We define ∆t as the period between two time instants in

T (i.e., ∆t = |tt − tt−1|), and assume the spatial mobility of

every robot r ∈ R limited to a unit of distance ∆x (or
√
2∆x

if moving in diagonal) for every ∆t, where ∆x is the distance

between the centers of two neighbor area units ga,b and ga′,b′

as depicted in Fig. 3. Therefore, it turns that each robot moves

at a velocity ∆x
∆t

if moving into the left/right or up/down

directions, but moves at velocity
√
2∆x
∆t

when traveling in di-

agonal directions. Clearly, if the velocity increases, so does the

corresponding energy cost. We consider this by introducing the

terrain-velocity constant ma,b,a′,b′ ∀a, a′ ∈ A, ∀b, b′ ∈ B,

which weights the energy consumption of the robots from

moving from position ga,b to position ga′,b′ [8]. The value

of ma,b,a′,b′ is dynamically set to infinite in case any of the

robot detects an obstacle, therefore influencing the mobility of

other robots in the corresponding unit of area in subsequent

time intervals. Whenever the robot moves, we can derive its

power consumption by adapting Equation 1 of Rappaport [12],

where instead of only computing the velocity, we consider the

terrain-velocity constant to account for obstacles and terrain

conformity as:

Pmovea,b,a′,b′
= 0.29 + 7.4ma,b,a′,b′ . (1)

As mentioned before, robots exploit an existing mobile in-

frastructure to communicate with the orchestrating entity. We

also consider PTXa,b as a variable representing the energy

consumed by the robot for transmitting data. The actual

robot transmit power should be adapted as to compensate the

radio path-loss. Therefore, the value of PTXa,b depends on

the current robot location (ga,b) and its distance from the

serving base station, as later detailed in Sec. V-C. Similarly,

robots consume energy for receiving data. In this case, we

consider PRX as a constant value independent of the robot

location. Without loss of generality, we assume all packets to

be of the same size. Finally, since robots need to map and

explore the terrain, they need to use their camera and sensors,

as well as process those data to avoid inefficient raw data

transmission. We collect the energy consumption derived by

all these activities in the variable PSEN , which represents

the energy consumed by robot sensors and corresponding

local data processing executed on the on-robot computing

infrastructure.

Decision variables Let lr,t,a,b be a binary decision variable

to control the robot mobility. Its value gets positive if the robot

r is at position ga,b at time instant t.
Similarly, we introduce ur,t as a binary decision variable

performing decisions on which robot r has to recharge its

battery at time t.
Objective To explore an unknown area as fast as possible,

and subsequently increase the chances of detecting the target

object (or person), we need to maximize the explored area

within the given time period |T | ×∆t. Furthermore, we also

want to ensure that the energy is consumed in the most efficient

way, and for that reason, we include in the objective function

the remaining battery of the robots in the last time instant.

Therefore, we can write our objective function as:

max
∑

t∈T

∑

(a,b)∈(A,B)

et,a,b + σ
∑

r∈R
br,|T | (2)

where σ is a scaling parameter that ensures the second term to

be of comparable magnitude with the first term, while pursuing

area exploration maximization.

Constraints We assume that the charging station can only

recharge one robot r ∈ R at every time instant t ∈ T , therefore

we introduce the following constraint:
∑

r∈R
ur,t ≤ 1 ∀t ∈ T , (3)

additionally, a robot r ∈ R can be charged at some time t ∈ T
only if the robot was already in the charging station at t− 1,

and continues to stay there at time t:

ur,t ≤
lr,t,aCS ,bCS

+ lr,t−1,aCS ,bCS

2
∀t ∈ T , ∀r ∈ R. (4)

Clearly, the duration of the recharge period may comprise

multiple time intervals t, to allow more energy to fill the

battery. With the following constraint, we ensure that each

robot r ∈ R can only be in one place in every time instant

t ∈ T :
∑

(a,b)∈(A,B)

lr,t,a,b = 1 ∀r ∈ R, ∀t ∈ T . (5)

In order to keep track of the exploration progress among

multiple robots, if any robot r ∈ R visited an area unit

ga,b ∈ (A,B) at some earlier time, or if it is exploring such

area unit at the current time t, that area becomes explored at

time t and we update the variable et,a,b accordingly.

et,a,b ≤ et−1,a,b+
∑

r∈R
lr,t,a,b ∀t ∈ T , ∀(a, b) ∈ (A,B), (6)

et,a,b ≥ et−1,a,b ∀t ∈ T , ∀(a, b) ∈ (A,B), (7)

|R|et,a,b ≥
∑

r∈R
lr,t,a,b ∀t ∈ T , ∀(a, b) ∈ (A,B). (8)

With the following constraint we define the mobility bound-

aries of the robots, and ensure that for each ∆t a robot r ∈ R
can only move to a neighbor area unit, or stay in the same

position. For every time in T and algorithm execution, we

consider the current robot locations as starting positions, while

for the rest of the time instants, we have:

lr,t+1,a,b ≤ lr,t,a,b + lr,t,a−1,b + lr,t,a+1,b + lr,t,a,b−1+

lr,t,a,b+1 + lr,t,a−1,b−1 + lr,t,a+1,b+1 + lr,t,a−1,b+1+

lr,t,a+1,b−1 ∀r ∈ R, ∀t ∈ T , ∀(a, b) ∈ (A,B). (9)

As detailed in [8], Equation 9 affects the robot velocity. In

fact, as mentioned before, the velocity and therefore the power

consumption depends on the direction of the robot movement.

This is taken into account in the constant Pmovea,b,a′,b′
.

Conversely, if the robot is recharging at the charging station

(i.e., ur,t = 1), the energy level of its battery increases with a

constant charging rate CR. Furthermore, in every time instant

the robot is not charging, it sends or receives data. When

transmitting, the consumed power depends on the distance to

the base station (according to PTX,a,b). Robots report feedback

information to the orchestrator, including current location,

battery level, and detected obstacles. On the other hand, the

consumed power of reception depends on PRX as previously

discussed. Finally, if a robot has never been in an area unit, its

sensors, camera, processing units and transmission elements

should be active. However, if the robot is in an already

explored area, an advanced orchestration solution may turn

them off for the purpose of saving energy. Robots are expected

to be reachable by the managing entity in every time instant.

For this reason, we assume robots never switch off their

receiving antennas. Taking this into account, our algorithm

updates the expected battery level br,t+1 by means of the

following equation:

br,t+1 = br,t + CR× ur,t+1 − PRX × (1− ur,t+1)−
∑

(a,b)∈(A,B)

∑

(a′,b′)∈(A,B)

lr,t,a,b × lr,t+1,a′,b′ × Pmovea,b,a′,b′

−PSEN ×
∑

(a,b)∈(A,B)

(1− et,a,b)× lr,t+1,a,b− (10)

∑

(a,b)∈(A,B)

PTX,a,b × (1− et,a,b)× lr,t+1,a,b ∀t ∈ T , ∀r ∈ R.

Outputs An optimal solution of the problem would consider

multiple outputs. First, it derives the optimal position of the

robots, i.e, their path planning. Second, it specifies in which

time instant each robot should charge. Third, it takes decisions

on the state of the sensors, indicating whether they should be

turned on or off at every specific time instant. Finally, and as

a way to compensate for non-flat exploration areas which may

cause larger energy consumption, it provides an estimation of

the battery charge level of each robot in the following instants

of time. For example, if the estimated charge is considerably

higher than the one reported by the robot, it could mean that

the robot has gone through an uphill path. The overall problem

formulation can be summarized as follows:

Problem OROS (T) :

max
∑

t∈T

∑

(a,b)∈(A,B)

et,a,b + σ
∑

r∈R
br,|T |

subject to:

(3)(4)(5)(6)(7)(8)(9)(10);

B. Offline vs Online Optimization

The problem described in Sec. IV-A can be solved in

different ways. For example, an offline approach would have

to consider complete knowledge over the input variables, and

solve the problem over the whole time period as depicted in

Fig. 4 (upper row). Conversely, an online algorithm would

solve an instantaneous instance of the problem over mul-

tiple steps, one for every decision interval t, relying only

on the limited amount of information dynamically collected

by the robots, as depicted in Fig. 4 (lower row). Notably,

in general, the output of the online algorithm may differ

from the one of the corresponding offline version, and not

necessarily reach the same solution in presence of multiple

local optimal points. In our previous work [8], we solve this

optimization task in an offline manner, assuming a-priori and

complete knowledge on the obstacle position and about the

geographical landscape. We refer to this approach as Offline

!",#

!

"

#$%&' $

!",#

!

"

time $ + 1

() * +

,-.

/ 0

1
2)())

)*

() * +

,-.

/ 0

1
2

)(
)))*)+

34566&7'89:#&

;9%<4&#&7'89:#&

=><49?&7'!?&5

@6&><49?&7'!?&5

A&#&B#&7'CDE#5B4&

@67&#&B#&7'CDE#5B4&

!",# "

|!",#F

!
""
#$
%
&
'!
(
!
)

!

!
%
#$
%
&
'!
(
!
)
'W

=
4

;:??&6#'89D9#'39E$#$96

!

2%&GHIHJK

%&JL!8L

Fig. 4: Example of robot exploration problem solved with the state-
of-the-art Offline (top) vs. proposed Online approach (bottom).

Oracle. Algorithm 1 summarizes its implementation as pseu-

docode. Although this approach represents a good benchmark

for the best achievable performances, its application to real

world scenarios is limited to very specific situations where

input information regarding obstacle location can be known

in advance and made available at startup. Conversely, in this

work, we develop an online algorithm that considers only

limited and up-to-dated information about the environment,

i.e., those that are collected as feedbacks from the robots.

Every robot-related event, e.g., object detection, terrain slopes,

etc. triggers a new optimization task as to devise the best

navigation path and sensor management strategy based on

the latest collected information. Despite this approach may

intuitively provide enhanced performances, it may actually

lead to unnecessary computation steps when considering only

short-term planning. Therefore, we propose a version of the

solver that takes decisions in W = {t, . . . , t + W} ⊆ T ,

i.e., the subset of the following W time steps, being W a

configurable parameter describing the size of the decision

time window. Such approach is well-suited for real-time

operations and allows for more efficient usage of computing

resources. Algorithm 2 shows how this problem should be

executed. Notably, while Algorithm 1 Offline Oracle is

only executed once and assumes the variable ma,b,a′,b′ as a

constant input to the problem, Algorithm 2 Online OROS

runs multiple times depending on both robot detection events

in the current location (a, b) and the value of W . The value

of ma,b,a′,b′ gets updated at every iteration depending on the

feedbacks from the robot. This affects the expected robot

energy consumption due to mobility Pmovea,b,a′,b′
, as well as

influences the transmission power PTX,a,b as later detailed in

Sec. V-C. In the following, we evaluate the performances of

these different approaches under a testing scenario through

experiments over a simulated setup.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the above

OROS optimization module when dealing with collaborative

Algorithm 1: Offline Oracle

Input : T ,R,G,ma,b,a′,b′ , CR, PSEN , PRX ;
Initialize : e0,a,b, lr,0,a,b, u0,t, br,0, PTX,a,b =

f(a, b), Pmovea,b,a′,b′
= f(ma,b,a′,b′);

Procedure:
1 SOLVE OROS (T) ;
2 GET et,a,b, lr,t,a,b, ur,t, br,t∀t ∈ T ;

Output : et,a,b, lr,t,a,b, ur,t, br,t, ∀t ∈ T ;

Algorithm 2: Online OROS

Input : T ,R,G, CR, PSEN , PRX ,W,W ;
Initialize : e0,a,b, lr,0,a,b, u0,t, br,0,ma,b,a′,b′ ←

∅, Pmovea,b,a′,b′
= f(ma,b,a′,b′), t =

0, PTX,a,b = f(a, b),W ⊆ T ;
Procedure:

1 while t < |T | do
2 UPDATE W ←W = {t, . . . , t+W} ;
3 SOLVE OROS: OROS(W, et,a,b, lr,t,a,b) ;
4 GET et,a,b, lr,t,a,b, ur,t, br,t ∀t ∈ W ;
5 for i ∈ W do
6 MOVE Robot according to lr,i,a,b ;
7 UPDATE ma,b,a′,b′ ;
8 UPDATE Pmovea,b,a′,b′

← Eq. 1 ;

9 UPDATE PTX,a,b ← Eq. 14;
10 t = t+ 1;
11 if Obstacle then
12 UPDATE W ←W = {t, . . . , t+W} ;
13 Go To OROS ;
14 end
15 end
16 end

Output : et,a,b, lr,t,a,b, ur,t, br,t ∀t ∈ T ;

robot scenarios. We first introduce the main robot and architec-

tural software components characterizing our scenario. Then,

in order to evaluate the orchestration benefit, we compare the

performances of the online OROS approach against the offline

Oracle. To this aim, robot battery and window size W must be

carefully evaluated and configured. As the overall exploration

performances are strictly related with the obstacles’ distribu-

tion, we generate a series of random scenarios to provide

general insights.

A. Robot Overview

We consider a set of Jackal UGV terrestrial mobile robots1

for outdoor applications in hard-to-reach environments, and

rely on publicly available open-source code implementing the

main software components2. The virtual robot instances are

provided with a camera, a Global Positioning System (GPS)

device, an Inertial Measurement Unit (IMU), a LiDAR sensor

and 5G peripherals. Fig. 5 presents the main robot simulated

components adopted along our experiments. The ROS software

composing the robot functionalities is composed by multiple

modules interacting to each other by means of topic message

exchange. The Gazebo software exploits these messages to

1Additional technical specifications are available at:
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

2Available at: https://github.com/jackal

simulate the robot’s movement and the sensors’ behavior in

the virtual environment. The Robot State Machine (RSM)

incorporates the computation of estimated current consump-

tion of each component, and manages the switching of robot

sensors and communication, as well as the robot navigation

and speed according to the OROS commands. In particular,

upon receiving a new exploration target, the RSM ROS node

calls the move base ROS service which, in turn, calculates a

global and local navigation path plans for the robot motion.

By default, ROS networks parameters such as the navigation

maximum speed and lidar activation are static. In the context

of our work, as discussed in Sec. IV, OROS can determine

the use of sensors and the robot navigation. Therefore, we

make use of the dynamic reconfigure ROS service within

our experiments to enable the RSM ROS node to modify

the parameters accordingly. During the exploration phase, the

robot continuously transmits data through the 5G network.

The update messages include detected obstacles by the lidar,

battery status, and camera video stream. Upon reaching an

exploration goal, the robot waits for new instructions. The

process repeats until reaching the full discovery of the target

area.

In order to validate the performance of OROS in re-

alistic scenarios, we considered a non-linear robot battery

discharge model and implement it within our experiments,

integrating a dedicated software module within the Gazebo

simulator3. Conversely to standard discharge models which

simply consider the charge dropping in a linear fashion with

respect to the current drawn from the virtual battery and

regardless of the environment temperature, our implementation

considers the exponential charge behavior typical of chemical

batteries at different temperatures. The module requires the

three main additional components: a battery joint link, the

definition of the energy consumers and a configuration file

in yaml format. We add the battery joint link to the Unified

Robot Description Format (URDF) file which includes the

mathematical model describing the battery behavior in our

gazebo robot model, and include the new energy consumers

in the RSM. Then, we set the main characteristics of our

battery in the configuration file. An example of a battery

discharge curve resulting from our experiments is depicted

in Fig. 5, considering a 20◦C temperature and a nominal

voltage of 10.62V. We consider four main sources of energy

consumption: motion, data transmission, data reception and

sensing. A ROS topic with 1 second periodicity is used to track

the instantaneous current consumption of each component,

which, together with the actual battery voltage, is used to

estimate the power consumption of each element. Similarly,

an additional ROS topic is used to account for the effects of

the battery recharge.

B. Testbed Framework and OROS Workflow

The following subsection describes the software and hard-

ware architecture implementing OROS. We adopted two dif-

3Available at: https://github.com/nilseuropa/gazebo ros battery

Robot Software

!"#$%"&

'%()$%*

+(,"%&

'%()$%*

-./(0(12&

'%()$%*

Jackal UGV

Lidar

Camera

3440(5"1(.6

7-8

GPS

Battery Emulatorator

9:

Fig. 5: Robot software components and non-linear battery

discharge example.

ferent machines, one acting as edge platform running Mat-

lab/Simulink software and co-located with the OROS real-

time orchestrator, and another running as robot client, hosting

the ROS middleware and the Gazebo robot simulator. The

two machines are connected by means of a simulated 5G

channel link [35], allowing IP-based communication among

the main operational entities. Combined with the usage of 5G,

Optimization and ROS toolboxes, Simulink acts as interface

for the OROS, translating the outcome of the online/offline

optimization into topic messages, and communicating them

through the ROS Master and the existing ROS network finally

reaching the exploration robots. The ROS Master acts as main

coordinator of the topic exchange, enabling communication

over the IP-based ROS network for topics related to sensing,

motion and behavior, which are interpreted by the Gazebo

simulator for realistic emulation and visual representation.

The communication paradigm follows the ROS default pub-

lish/subscribe method. Fig. 6 illustrates the overall system

architecture and main software components adopted along the

experiments.

More in details, the OROS workflow can be decomposed

into the following main steps:

1. Data Reception Along their exploration task, robots

periodically report to OROS the information about their status

within an unknown environment. This data consists of the

instantaneous position and orientation of the robot, as well as

the State of Charge (SOC) of the batteries and camera/LiDAR

data at the reporting time instant. Input data provided by the

robots pass through the simulated 5G link towards a series of

ROS topic subscribers listening by OROS.

2. Data Processing In order to optimize the robot path

and sensor planning, OROS evaluates the incoming robot

messages to identify the achievement of exploration goals,

the presence of obstacles, or the need for new exploration

goals. In scenarios where robots do not need to transmit data,

the orchestrator does not consider them for data evaluation.

Additionally, when one or more robots run out of battery

power, OROS passes over such robots in subsequent time

intervals when performing path planning operation.

3. Map Update OROS maintains a global exploration map

by joining the information collected by the swarm of robots. If

a new obstacle has been detected, a new path planning will be

enforced even if that obstacle does not interfere with the actual

path plan. Such a policy is encouraged by the fact that each

obstacle significantly affects the reachability of a neighboring

Fig. 6: Testbed Architecture

grid element.

4. Optimization It is of key importance to keep the ex-

ploration goals updated with the latest obstacle information

as to avoid unaware robots to collide with objects, or waste

energy into unnecessary exploration steps. Therefore, when

an update message of a robot device includes information

regarding unknown obstacles, a new path plan is computed by

solving an online instance of the problem described in Sec. IV,

accounting for the latest values reported by the robots.

5. Command Generation and Transmission Upon defin-

ing a new path plan, the set of instructions are converted into

exploration goal commands and delivered to the robots by

means of the simulated 5G link.

Finally, if the area has been completely explored, or the sim-

ulation reaches the maximum number of epochs |T | allowed

for the area exploration purposes, the simulation ends.

C. Scenario Setup and Methodology

In our work, we consider a variable set of robots that need

to be jointly orchestrated as to explore an unknown area

in the shortest time. Table III summarizes the experimental

parameters used in our evaluation.

All robots start their exploration from the same point within

the area of interest, co-located with the charging station.

We set ∆t = 10s and ∆x = 10m, which translates into

|ga,b| = 100m2. This allows to derive the velocity of the

robot as ∆x

∆t
= 1m/s if it moves into the up/down/left/right

direction, or at
√
2∆x

∆t
=

√
2m/s when moving in diagonal,

which is in line with the maximum speed of 2m/s provided by

commercial robot devices [36]. Each robot is equipped with a

fully charged battery at the beginning of the exploration phase.

About the charging station, in our experiment we consider the

worst case scenario with a single charging station providing the

lowest charging rate among the possible commercial options,

i.e., CR = 9.24J/s, as in the case of TurtleBot34. We

characterize the energy consumed by the robot for locomotion,

sensor operation and radio wireless communication as follows.

First, the power consumed by the locomotion Pmovea,b,a′,b′

(see Equation 1) depends on the terrain-velocity constant

4https://www.robotis.us/lipo-battery-charger-lbc-010/

TABLE III: Experimental Setup

Definition Value Definition Value

|T | 16 |R| 1,2,3

A×B 40× 40 m2 |ga,b| 10× 10 m2

Bmax 4500 J ∆t 10 s

CR 9.24 J/s v 1,
√
2 m/s

PSEN 12 W PRX 4 W
NFRX 4 dB N0 −174 dBm/Hz
GARx

10 dB GATx
10 dB

ma,b,a′,b′ , which also takes into account detected obstacles.

This constant can be defined as:

ma,b,a′,b′ =



















0 if a′ = a and b′ = b

∞ if there is an obstacle

between (a, b) and (a′, b′)

v = {1,
√
2} if a′ 6= a or b′ 6= b

(11)

where v is the velocity in m/s. Note that we assume no power

consumption for turning the robot in the desired direction.

Second, we characterize the power consumed by the sensors

PSEN , which includes processing all the generated data by

the camera, LiDAR and other sensors, as well as the power

consumed by the local computing infrastructure. Based on the

values from [37], we set it to take a value of 12W .

Moreover, we consider each robot is equipped with a

5G New Radio (NR) antenna module, consuming energy

whenever transmitting or receiving data. The power dissipated

by the robot depends on its distance from the serving base

station and on the corresponding Signal to Noise Ratio (SNR)

which, in turn, affects the adoption of a particular MCS. The

processing power consumed to encode radio packets is also

affected by the instantaneous MCS in use. A detailed charac-

terization of the power consumption in the virtual base station

as a function of the MCS can be obtained, e.g., from [38].

We leverage the work of [39] to accurately and realistically

model the energy consumption for uplink (UL) transmission

at the robot side, for every transmission time interval (TTI). It

considers the power consumption from the Radio Frequency

(RF) chain and the baseband (BB) processing, focusing on

RF transmitted power, Signal-to-Noise-Ratio (SNR), path loss,

transmission gains and losses, and real-time traffic demand. In

particular, the path loss can be derived as [40]:

PathLoss(a, b) = 20log10(d(a, b)) + 20log10(f)− 147.55,
(12)

where d(a, b) is the distance between the robot and the BS

(expressed in meters), and f is the carrier frequency, which

we set to 3.5 GHz within our experiments [41]. The noise is

considered for the transmission performance, which depends

on the receiver noise (NFRX), the thermal noise (N0) and

the number of RBs (NRBS) used to accommodate the traffic

demand in a single TTI:

Noise = N0 +NFRX + 10log10(12 · 2µ · 15kHz ·NRBS),
(13)

where 12 is the number of subcarriers in every resource block

considering normal cyclic prefix, µ is the 5G numerology

index which goes from 0 to 6 as specified in [42], and NRBS

is dynamically derived depending on the channel statistics

and instantaneous traffic demand, following the specifications

detailed in 3GPP TS 38.214 [43]. We assume µ = 0. The

transmitted power of the RF chain PTxRF is calculated as:

PTx,a,b = SNRTarget −GATx
+ LCTx

−GARx
+ (14)

LCRx
+ PathLoss(a, b) +Noise,

where GATx
and GARx

are the antenna gains at transmitter and

receiver, i.e., robot and BS, respectively, LCTx
and LCRx

are

the corresponding cable losses, and SNRTarget is the target

SNR at the receiver side. Based on the results and findings

of [44], we assume the transmission power consumption of

the BB processing PTxBB to be approximately 2.12 W, and

set LCTx
and LCRx

0dB and 0dB, respectively, and assign

GATx
and GARx

10dB and 10dB, respectively. In case of

downlink transmission (DL), we consider an average value of

4W according to the measurements of [38], and assume the

receiving module always on, to enable reachability of the robot

devices with control messages at any time. We use the Gurobi

solver [45] to address the optimization problem described in

Sec. IV.

D. Scenario Characterization and Sensitivity Analysis

In our case study, there are some key parameters that have a

significant impact on the robot exploration performances. For

example, the achievable exploration rate is primarily affected

by the robot battery capacity and by the total size of the

target area, and secondarily by the deployed number of robots,

which allow exploring the same area in a collaborative manner.

Perhaps surprisingly, also the number of obstacles in the

area as well as their localization alter the exploration perfor-

mances, and finally, the window size parameter has a great

impact on the orchestrator optimization and computing time,

which affects the delay between two consecutive navigation

instructions. In fact, smaller window sizes might provide faster

solutions, but may also lead to situations where the robot can

not travel to unexplored area units within the given time frame,

finally prioritizing the battery savings and preferring a standing

position. We define such occurrences as corner cases. For

Fig. 7: Exploration performances for different battery sizes

and orchestration approaches.

all these reasons, in the following we perform a sensitivity

analysis on several key-parameters of our model formulation,

assessing the impact of their variation on the overall system

performances.

Battery Size Fig. 7 depicts the explored area (in percentage)

over time when one robot with different battery sizes (Bmax)

tries to explore an unknown area. For each battery size, we

provide two lines, one for the orchestrator expected offline

Oracle results (dashed line) and another for the actual online

OROS results (solid lines) when using the Gazebo simulator.

In both cases, the highest battery capacity (4500J) has a steady

incremental behavior and can reach the totality of the explored

area at the end of the simulation. On the contrary, lower battery

capacities, such as 500J, 1000J and 1500J, achieve the worst

performances at the end of the simulation. The curves raise

while the robot explores new area units, while remains steady

for a period of time when the robot is sent to recharge its

battery. The two curves present very different behaviors over

time. In particular, we can notice a clear performance gap (and

delay) for the OROS approach. This behavior is mainly due to

the more realistic and precise assumptions taken by the OROS

approach, which also considers acceleration, deceleration, stop

and turn as causes of energy consumption. In the following,

if not else specified, we select a battery capacity of 2500J,

which allows exploring the majority of the target area while

exploiting the possibility of recharge.

Window Size In Fig. 8 we collect the results of 100
simulations, testing a variable number of obstacles randomly

placed in our reference scenario, as well as different decision

window sizes W ranging from 2 to 16 time steps. We consider

up to three robots within this evaluation. The positioning of

the obstacles was carried out in such a way as to avoid the

repetition of the scenario and guarantee access to the entire

exploration area. The upper row depicts the exploration results

at the end of the simulations, expressed as the percentage of

the total explored area. As expected, deploying more robots

increases the achievable exploration rate independently of the

optimization window size used. Nevertheless, when consid-

ering the same number of robot, larger W values positively

(a) 3 Obstacles (b) 5 Obstacles (c) 9 Obstacles

(d) 3 Obstacles (e) 5 Obstacles (f) 9 Obstacles

Fig. 8: Exploration performances and average solver time for different number of obstacles and variable window sizes.

affect the overall performances, with W = 8 and W = 16
achieving similar performances due to the relatively small

target area. Conversely, the lower row evaluates the solver

execution time required to compute an optimal solution in each

decision step. It should be noted that the number of calls to

the solver depends on the window size and the number of

obstacles identified by the robots in the reference scenario.

Therefore, we consider the computation time averaged over

the number of calls to the solver. From the plots, it can be

observed that the solver computing time depends on both

the number of robots and window size W . This clearly

impacts on the time between the reception of two consecutive

navigation goals. Interestingly, the computing time decreases

along the exploration task, as the occurrence of new obstacles

brings additional constraints to the optimization model, finally

breaking possible symmetries and easing the overall solving

process. Considering the exploration performances as well as

the comparison between computational solving times for the

different window sizes, within our settings, a window size of 8
brings the best trade-off between computational solving times

and exploration performances, and it is therefore used in the

following of the paper.

Channel Conditions Variable 5G channel conditions af-

fect the energy consumption of the robot, as more intensive

modulation and demodulation processing is required to keep

the communication active. To characterize this effect on the

battery consumption, in Fig. 9 we consider the traffic volume

generated by one robot towards the edge platform and derive

the energy consumption related to transmission over the 5G

interface following the model described in Sec. V-C. In

particular, we consider the impact of path-loss on the required

transmission power as described in Eq. 14, following the work

Fig. 9: Transmission energy consumption for different MCS

values and communication range.

of [44]. From this test study, we notice how the heatmap

gradient reflects an increase in power transmission required to

achieve larger SNR values and, in turn, the possibility to adopt

higher Modulation and Coding Schemes (MCS), as function

of the distance from the robot and the serving base station.

E. Assessing the gain of the OROS orchestrator

In the scenario considered in our study, the 5G and robot

orchestration cooperate to devise the best robot energy-saving

strategy while performing exploration tasks.

Fig. 10 characterizes the impact of smart orchestration

decisions in a multi-robot deployment, focusing on a single

robot and its battery SOC over time, as well as its uplink

traffic. In the figure, we compare OROS against a baseline

approach that considers an Always On scenario, and the

approach considered in [8], dubbed as OROS Constant SNR,

which considers the transmission energy consumption with a

constant channel quality level. Within these settings, the set of

(a) 3 Obstacles (b) 5 Obstacles (c) 9 Obstacles

Fig. 11: Exploration area over time using Online OROS, Offline Oracle and Always On approaches

Fig. 10: Impact of orchestration decisions on the robot energy

consumption.

robot navigation goals is kept constant to ease the comparison,

while the red area highlights the time instants where OROS

imposes the decision of switching off the robot’s sensors. In

the same plot, dashed black lines identify the occurrence of a

new command from OROS within the experiment.

We remark that as shown in Sec. V-C, variable wireless

channel conditions impose different load on the local process-

ing unit due to lighter (or heavier) modulation/demodulation

tasks and larger bandwidth utilization. The battery SOC de-

picted in the upper plot presents an exponential behavior at the

beginning of the experiment, which comes from the adoption

of a realistic non-linear battery model implemented in our

Gazebo simulator. Furthermore, we can notice, within the

highlighted time segments, how smart orchestration decisions

allow energy saving in the robot battery. In particular, between

75 and 110 seconds, the robot is required to go through an

already explored area. OROS promptly reacts and informs the

robot to keep its sensors off, pursuing energy optimization. The

energy that OROS allows to save enables the robot to continue

the exploration of new areas, in contrast with the always On

case, which consumes all its power and stops before task

completion. Finally, Fig. 11 considers the scenario introduced

in Sec. V-D comparing the performances of Online OROS

(solid lines) against two baseline approaches such as Oracle

(dashed lines), and Always On (dotted lines), implemented

within the Gazebo simulator. We consider up to three robots

equipped with a 2500J battery, a variable set of obstacles,

namely 3, 5 and 9, a window size of 8 time steps (W=8),

and a maximum simulation time limit of 200 seconds. Each

line is averaged over 12 experiments, each one characterized

by a random obstacle distribution. From the picture, it can be

noticed how the exploration rate increases faster by using a

larger number of robots for a fixed number of obstacles. At

the same time, as previously discussed, a larger number of

obstacles may translate into multiple update messages from

the robots. As each update message containing one or several

undiscovered obstacles triggers a new optimization task, this

increases the overall computation time as well as the time

robots have to wait for obtaining the next navigation goal.

When comparing OROS with the state-of-the-art Always On

approach, we can notice how the orchestration of the robot

and network applications results in energy savings that allows

extending the exploration range, with improvements up to

11.98% within our considered scenario. In general, the larger

the number of deployed robots, the more likely a unit area can

be crossed by multiple robots, thus enabling larger energy sav-

ings when employing our proposed OROS strategy. Similarly,

increasing the number of obstacles in a given scenario limits

the navigation options, thus forcing the robots to follow similar

paths and revisit already explored areas, e.g., in presence of

corridors or dead-ends, favoring larger energy savings. For

this reason, given the a-priori knowledge of obstacle location

available in the Offline Oracle approach, the latter is used as

benchmark for exploration rate and navigation in each simula-

tion instance. When comparing Online OROS with the optimal

Offline Oracle, we can notice a 3.12% and 6.25% exploration

rate gap in the case of 5 and 9 obstacles, respectively, for the

3 robot scenarios. The Offline Oracle avoids any replanning

that may occurr in the online version due to e.g., dead-ends

and corners. Additionally, conversely from Offline Oracle that

pre-computes the navigation path of robots before execution

(such time is not considered in Fig. 11), Online OROS requires

constant update messages from the robots. This translates into

multiple optimization solver calls to derive and update the

best path planning, slowing down the initial exploration phase.

Once again, obstacle density on the map has a direct impact on

the Online OROS and Offline Oracle performances, that in fact

present minimal to no differences in the 3 obstacle scenario

as depicted in Fig. 11a.

F. Discussion

In this work, we presented a framework for the deployment

of outdoor robotic applications exploiting a 5G infrastructure.

We implemented and evaluated an optimization approach

combining the orchestration of the 5G mobile infrastructure

with the energy-aware optimization of the on-board robot

sensors and drivers. First, we performed a sensitivity anal-

ysis of the different model parameters. Later, we assessed

the potential gain of the OROS orchestrator. To do so, we

considered a realistic non-linear discharge rate for the battery,

aware of the fact that its behavior in real scenarios will be

affected by multiple factors, including the type of battery

used, operational temperatures, and battery wear. Moreover,

an exhaustive evaluation of the benefits of the orchestration

solution should consider the overhead brought by virtualization

software on the robot platform, both in terms of commu-

nication overhead and computational burden. Additionally,

the current MILP formulation suffers scalability issues when

increasing the number of robots, limiting its applicability in

small fleet scenarios. Such an aspect may be mitigated by

adopting heuristic algorithms and pre-solving schemes that

consider contextual knowledge. Nevertheless, starting from our

test scenario and implementation, we believe our findings can

help characterize the expected behavior of complex systems.

VI. CONCLUSIONS AND FUTURE WORK

Due to limited computing and energy resource availability,

cloud-based robot deployments rely on mobile infrastructure

to enable collective robotic intelligence exchange and increase

their efficiency when performing tasks. However, current so-

lutions are limited by the fact that robot operating systems

and ICT computing and communication platforms, do not

have means to interact with each other. In this paper, we

propose a joint optimization framework for the concurrent

orchestration of the robotic, computing and communication

infrastructure domains. Our results show that collaborative

real-time robot operations would benefit from the adoption

of OROS, a joint orchestration solution that significantly

improves energy consumption and task completion duration of

5G-enabled robots. Future works include the implementation

of the proposed OROS framework in a real deployment,

comprising off-the-shelf outdoor robots and an operational 5G

mobile infrastructure. In order to fully characterize the benefits

of our orchestration solution, we will also consider more

realistic non-flat environments and multi-edge deployments,

which may bring different battery depletion times and further

exacerbate the problem solving.

ACKNOWLEDGMENT

The research leading to these results has been supported

by the Spanish Ministry of Economic Affairs and Digital

Transformation and the European Union – NextGeneration

EU, in the framework of the Recovery Plan, Transformation

and Resilience (PRTR) (Call UNICO I+D 5G 2021, ref.

number TSI-063000-2021-6), by the CERCA Programme from

the Generalitat de Catalunya, and by the European Union’s

H2020 5G ERA Project (grant no. 101016681).

REFERENCES

[1] A. Albanese, V. Sciancalepore, and X. Costa-Pérez, “SARDO: An
Automated Search-and-Rescue Drone-based Solution for Victims Lo-
calization,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[2] R. Fantacci, F. Gei, D. Marabissi, and L. Micciullo, “Public safety net-
works evolution toward broadband: sharing infrastructures and spectrum
with commercial systems,” IEEE Communications Magazine, vol. 54,
no. 4, pp. 24–30, Apr. 2016.

[3] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-Robot Simultane-
ous Localization and Mapping: A Review,” Journal of Field Robotics,
vol. 33, no. 1, p. 3–46, Jan. 2016.

[4] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous
Localization and Mapping: Toward the Robust-Perception Age,” IEEE

Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, Dec. 2016.
[5] M. Aleksy, F. Dai, N. Enayati, P. Rost, and G. Pocovi, “Utilizing 5G in

Industrial Robotic Applications,” in International Conference on Future

Internet of Things and Cloud (FiCloud), Aug. 2019, pp. 278–284.
[6] P. Skarin, W. Tärneberg, K.-E. Årzen, and M. Kihl, “Towards Mission-

Critical Control at the Edge and Over 5G,” in IEEE International

Conference on Edge Computing (EDGE), Sept. 2018, pp. 50–57.
[7] V. Petrov, M. A. Lema, M. Gapeyenko, K. Antonakoglou,

D. Moltchanov, F. Sardis, A. Samuylov, S. Andreev, Y. Koucheryavy,
and M. Dohler, “Achieving End-to-End Reliability of Mission-Critical
Traffic in Softwarized 5G Networks,” IEEE Journal on Selected Areas

in Communications, vol. 36, no. 3, pp. 485–501, Mar. 2018.
[8] C. Delgado, L. Zanzi, X. Li, and X. Costa-Pérez, “OROS: Orchestrating

ROS-driven Collaborative Connected Robots in Mission-Critical Opera-
tions,” in IEEE International Symposium on a World of Wireless, Mobile

and Multimedia Networks (WoWMoM), Jun. 2022.
[9] F. Voigtländer, A. Ramadan, J. Eichinger, C. Lenz, D. Pensky, and

A. Knoll, “5G for robotics: Ultra-low latency control of distributed
robotic systems,” International Symposium on Computer Science and

Intelligent Controls (ISCSIC), pp. 69–72, 2017.
[10] M. Albonico, I. Malavolta, G. Pinto, E. Guzman, K. Chinnappan, and

P. Lago, “Mining Energy-Related Practices in Robotics Software,” in
Mining Software Repositories Conference (MSR), May 2021.

[11] S. Swanborn and I. Malavolta, “Energy Efficiency in Robotics Software:
A Systematic Literature Review,” IEEE/ACM International Conference

on Automated Software Engineering Workshops, pp. 144–151, 2020.
[12] M. Rappaport, “Energy-aware mobile robot exploration with adaptive

decision thresholds,” International Symposium on Robotics (ISR), pp.
236–243, 2016.

[13] M. Rappaport and C. Bettstetter, “Coordinated recharging of mobile
robots during exploration,” IEEE International Conference on Intelligent

Robots and Systems, vol. 2017-Septe, pp. 6809–6816, 2017.
[14] A. Benkrid, A. Benallegue, and N. Achour, “Multi-robot Coordination

for Energy-Efficient Exploration,” Journal of Control, Automation and

Electrical Systems, vol. 30, no. 6, pp. 911–920, 2019.
[15] T. Raunholt, I. Rodriguez, P. Mogensen, and M. Larsen, “Towards a 5G

Mobile Edge Cloud Planner for Autonomous Mobile Robots,” in IEEE

Vehicular Technology Conference (VTC-Fall), 2021, pp. 01–05.
[16] C. Guimarães, M. Groshev, L. Cominardi, A. Zabala, L. M. Contreras,

S. T. Talat, C. Zhang, S. Hazra, A. Mourad, and A. de la Oliva, “Deep:
A vertical-oriented intelligent and automated platform for the edge and
fog,” IEEE Communications Magazine, vol. 59, no. 6, pp. 66–72, 2021.

[17] L. Girletti, M. Groshev, C. Guimarães, C. J. Bernardos, and A. de la
Oliva, “An Intelligent Edge-based Digital Twin for Robotics,” in IEEE

Globecom Workshops, 2020, pp. 1–6.
[18] Z. Gui and H. Li, “Automated Defect Detection and Visualization for the

Robotic Airport Runway Inspection,” IEEE Access, vol. 8, pp. 76 100–
76 107, May 2020.

[19] Stanford Artificial Intelligence Laboratory et al., “Robot Operating
System,” 2021 (accessed June 2021). [Online]. Available:
https://www.ros.org/

[20] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[21] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the Performance of
ROS2,” in International Conference on Embedded Software, 2016.

[22] S. Aldegheri, N. Bombieri, F. Fummi, S. Girardi, R. Muradore, and
N. Piccinelli, “Enabling Containerized Computing and Orchestration of
ROS-Based Robotic SW Applications on Cloud-Server-Edge Architec-
tures: Late Breaking Results,” in ACM/EDAC/IEEE Design Automation

Conference, 2020.
[23] ROS Wiki, “ROS wiki APIs,” 2021 (accessed July 2021). [Online].

Available: http://wiki.ros.org/APIs/
[24] ROS2, “ROS Middleware Abstraction Interface ,” 2021 (accessed July

2021). [Online]. Available: https://docs.ros2.org/foxy/api/rmw/
[25] X. Li et al., “Automating Vertical Services Deployments over the 5GT

Platform,” IEEE Communications Magazine, vol. 58, no. 7, pp. 44 – 50,
July 2020.

[26] X. Li, A. Garcia-Saavedra, X. Perez, C. Bernardos, C. Guimaraes,
K. Antevski, J. Mangues, J. Baranda, E. Zeydan, D. Corujo, P. Iovanna,
G. Landi, J. Alonso, P. Paixao, H. Martins, M. Lorenzo, J. Ordoñez-
Lucena, and D. López, “5Growth: An End-to-End Service Platform for
Automated Deployment and Management of Vertical Services over 5G
Networks,” IEEE Communications Magazine, vol. 59, no. 3, pp. 84–90,
March 2021.

[27] 3GPP (Third Generation Partnership Project), “Management and orches-
tration; Provisioning, TS 28.531, V15.4.0,” Sep. 2019.

[28] ——, “Management and orchestration; 5G Network Resource Model
(NRM), TS 28.541, V16.3.0,” Dec. 2019.

[29] ETSI, “Open source MANO (OSM) project,” 2021 (accessed June
2021). [Online]. Available: https://www.osm.etsi.org/

[30] L. Foundation, “Open Network Automation Platform,” 2021 (accessed
June 2021). [Online]. Available: https://www.onap.org/

[31] P. Simoens et al., “The Internet of Robotic Things: A review of con-
cept, added value and applications,” International Journal of Advanced

Robotic Systems, vol. 15, no. 1, 2018.
[32] M. Redha et al., “Survey on the cloud-IoT paradigms: Taxonomy and

architectures,” in 2020 IEEE Symposium on Computers and Communi-

cations (ISCC), 2020, pp. 1–6.
[33] S. Javanmardi et al., “FPFTS: A joint fuzzy particle swarm optimization

mobility-aware approach to fog task scheduling algorithm for Internet
of Things devices,” Software: Practice and Experience, vol. 51, no. 12,
pp. 2519–2539, 2021.

[34] ETSI, “ETSI GS NFV-IFA 005 v2.1.1, Network Function Virtualisation
(NFV); Management and Orchestration; Or-Vi reference point – Inter-
face and Information Model Specification,” 2016.

[35] 3GPP (Third Generation Partnership Project), “5G; Study on channel
model for frequency spectrum above 6 GHz, TS 38.900, V15.1.0,” Oct.
2018.

[36] N. Seegmiller and D. Wettergreen, “Optical Flow Odometry with
Robustness to Self-shadowing,” in IEEE International Conference on

Intelligent Robots and Systems, Sept. 2011, pp. 613–618.
[37] Y. Mei, Y. H. Lu, Y. C. Hu, and C. S. Lee, “A case study of mobile

robot’s energy consumption and conservation techniques,” International

Conference on Advanced Robotics (ICAR), pp. 492–497, Jul. 2005.
[38] J. A. Ayala-Romero, I. Khalid, A. Garcia-Saavedra, X. Costa-Perez,

and G. Iosifidis, “Experimental evaluation of power consumption in
virtualized base stations,” in IEEE International Conference on Com-

munications (ICC), Jun. 2021.
[39] A. R. Jensen et al., “LTE UE Power Consumption Model: For Sys-

tem Level Energy and Performance Optimization,” in IEEE Vehicular

Technology Conference (VTC Fall), 2012, pp. 1–5.
[40] Recommendation ITU, R P. 525-4, “Calculation of free-space attenua-

tion,” in Technical Specification, 2019.
[41] 3GPP (Third Generation Partnership Project), “5G; Study on channel

model for frequencies from 0.5 to 100 GHz, TS 38.901, V16.1.0,” Jan.
2020.

[42] ——, “5G; NR; Physical channels and modulation, TS 38.211, V17.3.0,”
Jun. 2022.

[43] ——, “5G; NR; Physical layer procedures for data, TS 38.214, V15.3.0,”
Oct. 2018.

[44] X. Pons et al., “Uplink energy efficiency in LTE systems,” in IEEE

International Workshop on Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD), 2013, pp. 109–113.
[45] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”

2021. [Online]. Available: https://www.gurobi.com

Arnau Romero received his M.Sc. in Industrial
Engineering specialisation in Automatic Control in
2022 from the Universitat Politècnica de Catalunya,
Spain. He is currently enrolled as PhD candidate in
Automatics, Robotics and Computer Vision at the
Universitat Politècnica de Catalunya in Barcelona.
He works as junior researcher at i2CAT Founda-
tion, Barcelona, Spain. His research interests include
robotics, energy modeling and efficiency, machine
learning, computer vision and their applicability to
5G.

Carmen Delgado received the MSc degree in
telecommunications engineering, the M.Sc. degree
in biomedical engineering, and the PhD degree (cum
laude) in mobile network information and communi-
cation technologies from the University of Zaragoza,
Spain, in 2013, 2014, and 2018, respectively. In
2018, she was a postdoctoral researcher with the In-
ternet Technology and Data Science Lab, University
of Antwerp, associated with IMEC, Belgium. She
works as senior researcher at i2CAT Foundation. Her
main research interests lie in the field of wireless

sensor networks, Internet of Things, mobile networks, resource allocation,
battery-less sensors and communications and Artificial Intelligence of Things.

Lanfranco Zanzi (S’17–M’22) received his B.Sc.
and M.Sc. in Telecommunication Engineering from
Polytechnic of Milan (Italy) in 2014 and 2017, re-
spectively, and the Ph.D. degree from the Technical
University of Kaiserlautern (Germany) in 2022. He
works as senior research scientist at NEC Laborato-
ries Europe. His research interests include network
virtualization, machine learning, blockchain, and
their applicability to 5G and 6G mobile networks
in the context of network slicing.

Xi Li is a Senior Researcher on 6G Networks R&D
at NEC Laboratories Europe, Germany, and the
Vice Chairman of the 5GPPP Architecture Working
Group. She received her M.Sc. in 2002 from the
Technical University of Dresden and Ph.D. in 2009
from University of Bremen, Germany. She was the
Technical Led of EU H2020 5Growth project and
the work package led of EU H2020 5G-Crosshaul
and 5G-TRANSFORMER projects. Previously, she
was a senior researcher fellow and lecturer at the
University of Bremen and a solution designer at

Telefonica, Germany. She has published 80+ journal and conference pub-
lications, and given many invited talks in various industrial events and
international conferences. She is an inventor of 18 patents including 7 granted
ones, and active in contributing to IETF CCAMP WG with two published
RFCs and received best overall award at IETF’99 Hackathon in 2017. Her
research interests comprise the design for next generation mobile and wireless
networks, open and virtualized RAN, distributed edge platform solutions,
applying AI/ML for resource and service management and automation.

Xavier Costa-Pérez (M’06–SM’18) is Head of
Beyond 5G Networks R&D at NEC Laboratories
Europe, Scientific Director at the i2Cat R&D Center
and Research Professor at ICREA. His team con-
tributes to products roadmap evolution as well as to
European Commission R&D collaborative projects
and received several awards for successful technol-
ogy transfers. In addition, the team contributes to
related standardization bodies: 3GPP, ETSI NFV,
ETSI MEC and IETF. Xavier has been a 5GPPP
Technology Board member, served on the Program

Committee of several conferences (including IEEE Greencom, WCNC, and
INFOCOM), published at top research venues and holds several patents.
He also serves as Editor of IEEE Transactions on Mobile Computing and
Transactions on Communications journals. He received both his M.Sc. and
Ph.D. degrees in Telecommunications from the Polytechnic University of
Catalonia (UPC) in Barcelona and was the recipient of a national award for
his Ph.D. thesis.

