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ABSTRACT

Forking attacks against TEEs like Intel SGX can be carried out either
by rolling back the application to a previous state, or by cloning
the application and by partitioning its inputs across the cloned
instances. Current solutions to forking attacks require Trusted
Third Parties (TTP) that are hard to find in real-world deployments.
In the absence of a TTP, many TEE applications rely on monotonic
counters to mitigate forking attacks based on rollbacks; however,
they have no protection mechanism against forking attack based
on cloning. In this paper, we analyze 72 SGX applications and show
that approximately 20% of those are vulnerable to forking attacks
based on cloning—including those that rely on monotonic counters.

To address this problem, we present CloneBuster, the first prac-
tical clone-detection mechanism for Intel SGX that does not rely
on a TTP and, as such, can be used directly to protect existing ap-
plications. CloneBuster allows enclaves to (self-) detect whether
another enclave with the same binary is running on the same plat-
form. To do so,CloneBuster relies on a cache-based covert channel
for enclaves to signal their presence to (and detect the presence of)
clones on the same machine. We show that CloneBuster is robust
despite a malicious OS, only incurs a marginal impact on the appli-
cation performance, and adds approximately 800 LoC to the TCB.
When used in conjunction with monotonic counters, CloneBuster
allows applications to benefit from a comprehensive protection
against forking attacks.

CCS CONCEPTS

• Security and privacy → Software security engineering; Side-
channel analysis and countermeasures.
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1 INTRODUCTION

Trusted Execution Environments (TEE), such as Intel SGX, enable
user processes to run in isolation (i.e., in so-called enclaves) from
other software on the same platform, including the OS. Intel SGX
applications are, however, susceptible to so-called forking attacks,
where the adversary partitions the set of clients and provides them
with different views of the system. Forking attacks may be mounted
either by cloning an enclave or by rolling back its state [57]. Rollback
attacks exploit the fact that the sealing functionality of Intel SGX
lacks freshness guarantees. This opens the door for a malicious
OS to feed a victim enclave with stale state, whenever the enclave
requests to unseal its state from storage—thereby “rolling back”
the enclave to a previous state. Cloning attacks leverage the fact
that Intel SGX does not provide means to control the number of
enclaves, with the same binary, that a malicious OS can launch on
the same machine.

Forking attacks against enclaves—either by rollback or by cloning—
result in serious consequences in a number of applications ranging
from digital payments [105] to password-based authentication [142].
For example, in a password manager application, forking attacks
may allow an adversary to brute-force a password despite rate-
limiting measures adopted by the application. Similarly, in a pay-
ment application, an adversary could spend the same coins in mul-
tiple payments by reverting the state of its account balance.
Problem. A comprehensive solution to thwart forking attacks re-
quires a centralized trusted third party (TTP) [151] or a distributed
one [57, 91, 111, 118]. Unfortunately, in most real-world applica-
tions, TTPs are hard to find. Moreover, some TTP-based solutions
might themselves be subject to cloning attacks during the initial-
ization process, unless the initialization involves yet another TTP
(e.g., a trusted administrator [111] or a blockchain [118]). With-
out TTPs, most applications can mitigate forking attacks based on
rollbacks by means of hardware-based monotonic counters [142].
However, an application that uses monotonic counters can still be
cloned—making it still susceptible to forking attacks. To confirm this
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intuition, we thoroughly analyzed the security of 72 SGX-based pro-
posals listed in [13, 24] with respect to forking attacks. Our findings
show that 14 of those applications (i.e., roughly 20%) are vulnera-
ble to forking attacks based on cloning. Among those vulnerable
proposals, only 3 rely on monotonic counters to counter rollback
attacks, but can still be forked by cloning. A notable (production-
ready) application that is vulnerable to forking by cloning is BI-
SGX [131]. Previous work has shown that BI-SGX is vulnerable to
forking attacks based on rollbacks [89]; the authors of [89] propose
to fix the vulnerability using monotonic counters. We show that
relying on monotonic counters is not enough to prevent forking
attacks and report a forking attack based on cloning against the
fixed version of BI-SGX that uses monotonic counters.
Research question. Can we design an anti-cloning solution that is
practical, efficient, and does not require a TTP? To the best of our
knowledge, no such solution exists at the moment.
Concrete solution. To address this question, we propose Clone-
Buster, the first practical clone detection mechanism for SGX
enclaves that does not rely on any external party. CloneBuster
provides enclaves with the ability to (self-) detect whether other
enclaves with the same binary are running on the same platform—
without relying on a TTP. More precisely, we show how to lever-
age cache-based covert channels as a signaling mechanism for
enclaves. Intuitively, if each enclave running on a machine uses the
same channel to signal its presence to (and detect the presence of)
other enclaves loaded with the same binary, cloning attacks can be
promptly detected.CloneBuster ensures robust detection of clones
despite noise on the channel—due to other benign applications pol-
luting the cache—and even when the OS is malicious. When used in
conjunction with monotonic counters, CloneBuster enables en-
claves to benefit from a comprehensive protection against all types
of forking attacks (including rollback attacks) without relying on
an external trusted party. Moreover, we show that CloneBuster
could be equally used in solutions like ROTE [111] or NARRA-
TOR [118] to avoid the use of yet another TTP when the system is
being initialized. We summarize our contributions as follows:

Impact of cloning on SGX applications: We thoroughly an-
alyze the vulnerability of 72 SGX-based applications against
forking attacks (cf. Section 3). We show that 14 applications
either do not account for any protection mechanism against
forking or simply prevent forking attacks based on rollbacks
bymeans of monotonic counters—these remain vulnerable to
forking attacks based on cloning. Inspired by these findings,
we discuss in details how to mount a forking attack based
on cloning against such applications. We also describe and
implement an attack against a production-ready open-source
application.

CloneBuster: We introduce a practical, novel clone-detection
mechanism, dubbed CloneBuster, that does not rely on a
TTP (cf. Section 4). We analyze the security of CloneBuster
and show that it can effectively detect clones in spite of a
malicious OS (cf. Section 5).

Prototype implementation & evaluation We implemented
a prototype of CloneBuster and evaluated it under realistic
workloads (cf. Section 6). We additionally report the perfor-
mance of CloneBuster when used to detect forking attacks

on an open-source production-ready SGX application. Our
evaluation results show that CloneBuster achieves high de-
tection (F1 score up to 0.999), with a maximum performance
penalty of 4%; the TCB increase is only 800 LoC. The code
of our prototype is available at [58].

2 BACKGROUND

2.1 Cloning SGX Enclaves

Cloning an application (irrespective of whether it resides within an
enclave) may or may not include its runtimememory. “Live” cloning
consists of creating a copy of a running process, that includes also
the runtimememory of the original process. In contrast, a “non-live”
cloning operation creates a clone by only copying the code and the
persistent state.

We note that Intel SGX limits live cloning of enclaves “by de-
sign”. In particular, EPC encrypted memory and hardware-managed
EPCM prevent live cloning of enclaves: in a nutshell, an encrypted
memory page assigned to a given enclave, cannot be copied and
assigned to another one.

With respect to non-live cloning, we note that the sealing func-
tionality used to persist state information to disk prevents cross-
platform cloning. In particular, cryptographic keys that Intel SGX
uses for sealing enclave data, depend on the host where the enclave
is running. Therefore, state sealed by an enclave on a given host
cannot be unsealed on a different host.

Nevertheless, Intel SGX does not prevent non-live cloning of an
enclave on the same platform, nor does it provide a mechanism to
distinguish two such clones. In particular, the number of enclaves
that can be set up on a given host and executed at the same time—
regardless of the loaded binary—is only limited by system resources.
Thus, little prevents an adversary, that controls the OS on a given
host, to launch a number of enclaves with the same binary. In case
one of those enclaves seals data to disk, all other enclaves with the
same binary have access to that data—since sealing keys on a given
host only depend on the enclave identity. As a result, if one enclave
is attested and provisioned with a secret, all clones will have access
to the same secret. Intel acknowledges that there is no mechanism
to distinguish enclaves loaded with the same binary on the same
platform, since they all share the same identities (i.e., MRSIGNER
and MRENCLAVE).1

3 CLONING ATTACKS ON INTEL SGX

3.1 Motivation

Forking attacks against TEEs such as Intel SGX can be mounted
either by rolling back the enclave to a previous state or by launching
several instances of the victim enclave [57].

To illustrate how forking attacks based on cloning work, assume
an enclave that is not susceptible of rollback attacks—e.g., an enclave
that uses monotonic counters to seal its state. We can model the
enclave as an automata 𝐸𝐼𝐷 , where 𝐼𝐷 refers to the identity of
the enclave (i.e., MRSIGNER and MRENCLAVE). Upon start, the
enclave obtains the initial state 𝑆0 from the OS and it is ready to
process inputs. The enclave moves to the next state 𝑆 𝑗 as a function
𝐹 of the current state and the current input 𝐼 𝑗 . For example, without

1https://intel.ly/3uprwdh
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malicious interference, an enclave fed with inputs 𝐼1, 𝐼2, and 𝐼3 (in
that order), moves through states 𝑆1 = 𝐹 (𝑆0, 𝐼1), 𝑆2 = 𝐹 (𝑆1, 𝐼2), and
final state 𝑆3 = 𝐹 (𝑆2, 𝐼3). Each time the enclave moves to a new
state, it seals the new state to disk so to resume from the latest state
upon reboot.

To fork the application, the adversary can create two clones,
say 𝐸𝐼𝐷 and 𝐸′

𝐼𝐷
, and provide both of them with initial state 𝑆0.

Next, the OS feeds inputs 𝐼1 and 𝐼2 to 𝐸𝐼𝐷 and it feeds 𝐼3 to 𝐸′
𝐼𝐷

.
Thus, enclave 𝐸𝐼𝐷 moves to state 𝑆1 = 𝐹 (𝑆0, 𝐼1) and final state
𝑆2 = 𝐹 (𝑆1, 𝐼2), whereas 𝐸′𝐼𝐷 move to state 𝑆 ′3 = 𝐹 (𝑆0, 𝐼3). The above
example implies that a successful forking attack based on cloning
requires running multiple instances of the victim enclave at the
same time between two state updates. Running the two instances
one at a time does not lead to a fork. To illustrate this, assume 𝐸′

𝐼𝐷
is started after that 𝐸𝐼𝐷 has processed input 𝐼2 and sealed state 𝑆2.
Thus, upon start 𝐸′

𝐼𝐷
fetches the latest state 𝑆2 from disk—recall

that the application is not susceptible to rollbacks— obtains input
𝐼3 and moves to state 𝑆3 = 𝐹 (𝑆2, 𝐼3).

Comprehensive solutions to forking attacks rely on a central-
ized [151] or distributed TTP [57, 91, 111, 118, 151]. For example,
the authors of [57] show how to detect forking attacks if clients are
mutually trusted—that is, clients themselves act as a distrusted TTP.
Solutions like ROTE [111] or NARRATOR [118] prevent forking
attacks by using a cohort of enclaves—distributed across different
hosts—that offer forking prevention to (other) application enclaves.
It is interesting to note that solutions like ROTE can be themselves
victim of forking attacks by cloning when the cohort of enclaves
is being initialized [118]. Once the cohort is forked, applications
enclaves that use ROTE can be forked. ROTE [111] prevents forks of
the cohort during initialization by means of a trusted administrator
that helps initializing the cohort; NARRATOR removes the need
for a centralized TTP—the administrator—by replacing it with a
BFT-like blockchain, thereby using a distributed TTP.

This results in the following observation: some TTP-based solu-
tion to forking like NARRATOR needs to use another TTP (i.e., the
blockchain) to avoid being forked during its initialization process.
As such, existing solutions are hard to instantiate for most real-
world applications. Moreover, trusted parties are hard to find in
real-world deployments. Without the aid of a trusted third party,
many SGX-based applications mitigate rollback attacks by using
TPM’s monotonic counters. However, even if rollback attacks are
not feasible, an adversary can still clone the victim application in
order to mount a forking attack.

3.2 Cloning Attacks in the Wild.

We analyzed the security of 72 SGX-based applications against
rollback and cloning attacks. Selected applications were taken from
curated lists of SGX papers [13, 24]. We analyzed the application
source-code when available; otherwise we analyzed the description
provided in the paper where the proposal was introduced.

Our results are summarized in Table 3 (see Appendix). Based on
our findings, we draw the following observations:

• Out of the 72 proposals, 14 applications (i.e., roughly 20%)
are vulnerable to forking attacks based on cloning.
• 11 of the vulnerable 14 applications do not account for any
protection mechanism against forking attacks.

Enclave

Data

1 Secure session

2 enc(𝑑)

Host

5 enc((𝑖, 𝑓))

7 enc(𝑓(𝑑))

remote_attestation

𝑠 = seal_data (𝑑)

𝑓(𝑑) =	run_interpreter (𝑖, 𝑓)Owner
Researchers

4 Secure session

3 Store (𝑖, 𝑠) 6 Get sealed data (𝑖)

BI-SGX
Database

Figure 1: Overview of the BI-SGX enclave and its interactions

with Data Owners and Researchers

• 3 of the 14 vulnerable applications prevent rollback attacks
with a monotonic counter; yet, they are vulnerable to forking
attacks based on cloning.
• 7 of the 14 vulnerable applications do not seal state, and
therefore are not vulnerable to rollback attacks per design;
however, those applications are vulnerable to cloning.
• Out of the 72 proposals, 11 use a TTP to prevent forking
attacks. Among these 11 proposals, 9 rely on a decentralized
ledger to prevent forking (8 of those are blockchain appli-
cations). Finally, 2 applications dismiss rollback attacks by
claiming that these attacks can be mitigated by ROTE [111].

We categorize the 14 vulnerable applications in three different
categories, namely, A, B, and C. Category A mostly consists of
in-memory key-value stores (KVS); by cloning the application, the
adversary can split the inputs from different clients across multiple
KVS instances so that clients have different “views” of the store (e.g,
updates made by one client to a specific key are not seen by another
client). Applications in category B seal state to have it available
across restarts; by cloning these applications, the adversary can
obtain multiple valid states that can be fed to the enclave when it
restarts. Category C mostly consists of applications that leverage
an SGX enclave as a proxy to guarantee unlinkability or privacy
of client requests; by cloning the application, the adversary can
partition the set of clients, thereby reducing the anonymity set for
each of the clients. We detail how to mount cloning attacks for each
category in the extended version of the paper [58].

3.3 Case Study: Cloning attack against BI-SGX

As a case-study, we show how to successfully mount a forking
attack based on cloning against BI-SGX [131]2. We chose BI-SGX
because (i) its code is open-source, (ii) it was shown to be vulnerable
to forking attacks based on rollbacks and a fix based on monotonic
counters was proposed [89]. Our attack against BI-SGX shows that
even if applications use monotonic counters to mitigate forking at-
tacks based on rollbacks, they are still vulnerable to forking attacks
based on cloning.
Overview of BI-SGX. BI-SGX provides secure computation over
private data in the cloud by leveraging SGX. As shown in Figure 1,
a data-owner sends to the BI-SGX enclave data d encrypted; the
encryption key is agreed between the enclave and the data owner
via remote attestation. The BI-SGX enclave decrypts the plaintext,
seals it, and sends the sealed data (denoted as s) to an external data-
base. The database stores s along with an index i as a tuple [i, s].
Later on, a researcher can send requests to the enclave; requests

2https://github.com/hello31337/BI-SGX
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seal_data

Require: Encrypted data 𝑐𝑂
1: 𝑑 = Decrypt (𝑐𝑂 )
2: 𝑠 = Seal (𝑑 )
3: OCALL_Store (𝑖 , 𝑠 )

run_interpreter
Require: Encrypted request 𝑐𝑅
Ensure: Encrypted result 𝑐𝑅𝐸𝑆
1: 𝑟𝑒𝑞 = Decrypt (𝑐𝑅 )
2: 𝑖 , 𝑓 = BISGX_main (𝑟𝑒𝑞)
3: 𝑠 = OCALL_DB_get (𝑖 )
4: 𝑑 = Unseal (𝑠 )
5: 𝑐𝑅𝐸𝑆 = Encrypt (𝑓 (𝑑 ) )

Figure 2: Pseudocode of the target functions exposed by the

enclave as ecalls: seal_data and run_interpreter

seal_data

Require: Encrypted data 𝑐𝑂
1: 𝑑 = Decrypt (𝑐𝑂 )
2: Increment(MC)

3: Read(MC)

4: 𝑠 = Seal (𝑑 ,MC)
5: OCALL_Store (𝑖 , 𝑠 )

run_interpreter
Require: Encrypted request 𝑐𝑅
Ensure: Encrypted result 𝑐𝑅𝐸𝑆
1: 𝑟𝑒𝑞 = Decrypt (𝑐𝑅 )
2: 𝑖 , 𝑓 = BISGX_main (𝑟𝑒𝑞)
3: 𝑠 = OCALL_DB_get (𝑖 )
4: (𝑑 ,MC) = Unseal (𝑠 )
5: if 𝑖 == MC then

6: 𝑐𝑅𝐸𝑆 = Encrypt (𝑓 (𝑑 ) )

Figure 3: Pseudocode of the patched functions from Figure 2

using monotonic counters. Changes are highlighted in gray.

include the index that is used to retrieve data from the database
and a description of a function f to be computed over the data.
More precisely, a request includes a tuple [i,f]; communication is
secured with keys agreed between the enclave and the researcher
via remote attestation. Once the enclave receives the request, if
[i,s] exists in the database, the enclave unseals s to recover data d
and returns f(d). Note that the database lies outside of the enclave
boundaries. Therefore, it can be under the control of a malicious
OS or cloud provider.

Rollback Attacks on the early version of BI-SGX.A system like
BI-SGX should offer some state continuity guarantees. More pre-
cisely, as stated by Jangid et al., [89], researcher queries containing
different indexes should retrieve and process different data items
or, the other way around, queries containing the same index should
process the same data item. Jangid et al., [89] used the Tamarin
prover to show that BI-SGX could not guarantee such property.
Namely, an attacker could feed the enclave with different data even
if researchers submit requests with the same index.

To understand how the attack works, we show in Figure 2 the
pseudocode for the two main functions manipulating the data
from the data-owners and researchers perspective, i.e., seal_data
and run_interpreter, respectively. Note that function seal_data
does not include the index used for data retrieval; the latter is added
by the database when it receives the encrypted data for storage. It
is straightforward to see how, upon request issued by the BI-SGX
enclave to retrieve data item with index i, a malicious OS could
return any sealed data item; the enclave has no means to tell if the
sealed data returned by the OS is the right one.

Protecting BI-SGX with Monotonic Counters. The aforemen-
tioned vulnerability was reported to the developers of BI-SGX by
Jangid et al., [89]. The latter also proposed to use monotonic coun-
ters (MC) to mitigate this attack. The idea is to seal the index of the
data along with the data itself. Hence, when the BI-SGX enclaves re-
quests sealed data with index i and obtains a ciphertext Enc(d,j),
it only accepts d as valid if i=j. Further, the use of monotonic
counters as indexes ensure that not two data items can be stored

𝐸

Data

1 enc(𝑑)

MC Service

𝑠 = seal_data (𝑑)

Owner

2 Inc 3 Get(MC)

4 Store (𝑖, 𝑠)

𝐸′
𝑠′ = seal_data (𝑑′)

2 Inc Get(MC)

1 enc(𝑑′)

3

4 Store (𝑖, 𝑠′)

Host

Figure 4: Overview of a cloning attack against the fixed ver-

sion of BI-SGX that uses monotonic counters.

with the same index. We implemented the fix suggested by [89] as
shown in Figure 3. Here, we use the de-facto “inc-then store” mode
of monotonic counters to provide security against rollback attacks.

Forking the “fixed” version of BI-SGX.We argue that this fix
is not enough to prevent forks for the BI-SGX enclave. Namely, if
there are clones of the enclave running on the system, it is possible
to assign the same index to multiple data items. Therefore, when the
BI-SGX requests sealed data from the OS, the latter can return one
of many valid data items. To carry out this attack, the attacker has
to focus on the data owner function, i.e. seal_data. The process
is sketched in Figure 4. The attacker controlling the execution of
two BI-SGX enclaves, 𝐸 and 𝐸′, has to make sure that both execute
Increment(MC) before allowing them to proceed with Read(MC).
In a nutshell:

(1) The adversary starts two BI-SGX enclave instances.
(2) The adversary feeds one data item d to enclave 𝐸 and another

data item d’ to enclave 𝐸′ (as per figure 4). The current value
of the counter is MC (cf. Figure 4 stage 1).

(3) The adversary stops the instance that first executes Incre-
ment(MC) until the other one has also executed it. The
counter at this state is equal to MC+2. For this proof of con-
cept, we have manually synchronized the execution of both
instances, in practice an attacker could use a framework such
as SGX-Step [150] (cf. Figure 4 stage 2).

(4) The adversary allows both instances to proceed. They exe-
cuteRead(MC) and get exactly the same value of the counter
(MC+2) (cf. Figure 4 stage 3).

(5) Instance𝐸 seals (d,MC+2)while instance𝐸′ seals (d’,MC+2).
Both ciphertexts are sent to the database. Both ciphertexts
are valid for a query from a researcher to process data stored
at index MC+2, as the BI-SGX enclave only checks if MC in
the sealed blob is equal to the index value in the researcher
request (cf. Figure 4 stage 4).

We note that the adversary is not limited by the number of
instances that can be launched at the same time.

We responsibly disclosed this vulnerability to the developers of
BI-SGX. They agreed to take into account attacks based on cloning
for further releases of BI-SGX. In Section 6, we show how our
proposed solution, CloneBuster, can efficiently detect any enclave
cloning attempts in between the execution of Increment(MC) and
the data sealing phase.
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4 CLONEBUSTER

4.1 System & Threat Model

Given the observations made in Section 2 and in Section 3, we focus
on the practical problem of detecting clones on a single platform,
in realistic application scenarios where the OS is malicious and
the enclave has no access to a trusted third party. As shown in Ta-
ble 3 (see Appendix), such a setting faithfully mimics most existing
deployments.

We consider two enclaves to be clones if (i) they have been
loaded with the same binary (hence, they have the sameMRSIGNER
and MRENCLAVE)3, and (ii) they run at the same time. Condition
(i) also implies that clones of an enclave share long-term public
keys; condition (ii) is necessary for a successful forking attack as
explained in the previous section.

We assume the common threat model for Intel SGX where the
hardware is part of the TCB, but the adversary controls privileged
software (e.g., the OS) on the host. The goal of our adversary is to
run multiple clones on a platform while bypassing the detection
mechanism. Similar to [50, 60, 62, 63, 81, 100, 140, 143, 146], we
consider Denial of Service (DoS) attacks to be out of scope. We
note that a malicious OS can anyway DoS a process running on its
platform—irrespective of the defense mechanism employed.

4.2 Overview of CloneBuster

The main intuition behind CloneBuster is to rely on a covert
channel as a signaling mechanism so that each enclave can indicate
its presence to (and detect the presence of) clones. Namely, if the
enclave instance is truly unique, it will see no response on the
channel being monitored. On the other hand, if multiple instances
are running, each instance will observe a measurable response in
the form of a contention pattern. The challenges in using a covert
channel as a signaling mechanism for clones lie in how to make
communication robust despite (benign) noise due to other applica-
tions on the platform and, most importantly, despite a malicious
OS that may tamper with the channel so that two clones do not
detect each other.

3This also means that each enclave can access data sealed by its clone.

Select 
channel

Build 
eviction sets

Preparation
phase

Start 
Counter

Increment 
counter

Read 
counter

Fetch 
data

Classify 
elapsed time

Read 
counter

Monitoring
phase

Counting thread

Main thread

Figure 6: Overview of CloneBuster.

CloneBuster undergoes two phases of operation: a preparation
phase and a monitoring phase. The preparation phase is used to
define the “channel” to be used for signaling and detection. By
channel, we refer to a specific group of cache sets, so that enclaves
with the same (resp. different) binary will use the same (resp. a
different) channel (cf. Figure 5).

Once the channel has been defined, CloneBuster builds the
eviction sets required to communicate over such (cache-based)
channel. During the monitoring phase, CloneBuster fills the cache
sets of its channel with its own data, and continuously measures the
time to access such data, in order to detect if it is still cached (cache
hit) or if it has been evicted (cache miss). Note that clones will use
the same channel (i.e., the same group of cache sets), removing each
other’s data. The resulting sequence of cache hits and misses is
then fed to a classifier whose role is to distinguish whether clones
are running on the same host based on the input sequence.

From an architectural point of view, CloneBuster relies on two
threads. The main thread measures access time to the cache and
runs the classifier in order to detect clones. Recall that SGX 1.0
enclaves have no access to high precision timers API (e.g., rdtsc and
rdtscp). Thus, we leverage a second thread that implements a timer
by continuously increasing a runtime variable [107, 137]. Figure 6
summarizes the main execution steps of CloneBuster. We note
that SGX 2.0 allows enclaves to access rdtsc, so CloneBuster could
work without the second thread on platforms where SGX 2.0 is
available.

Notice that we do not define the specific enclave behavior in
case the main thread detects a clone or if a clone raises an alarm,
and leave the selection of a suitable choice to the enclave developer.
However, it is reasonable to anticipate that the enclave would halt
its execution and notify the owner in such cases.

Notice that the cache-based channel used by CloneBuster is
shared with other applications and a potentially malicious OS. That
is, any other process may intentionally pollute the channel of an
enclave that uses CloneBuster. In case the channel is polluted,
CloneBuster experiences a series of cache misses as if a clone
were running on the same platform. Hence CloneBuster detects a
clone and raises an alarm (e.g., stops the execution of the enclave).
We treat this as a DoS attack and consider DoS attacks as out of
scope.

In the following, we provide details on the preparation phase
(channel selection and eviction sets) and the monitoring phase.

4.3 Phase 1: Preparation Phase

4.3.1 Channel Selection. CloneBuster uses the cache as a channel
for an enclave to signal its presence to (and detect the presence of)
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other enclaves with the same binary. Detection succeeds as long
as enclaves with the same binary monitor the same channel, and
enclaves with different binaries monitor different channels.

Assuming a typical cache with 𝑠 slices and 1024 sets per slice,
there are 10 bits of a physical address that determine the cache set
index (bits 6-15). An enclave only manages 6 of those bits (6-11),
but it is unaware of the remaining 4 bits (12-15) that are controlled
by the OS. By fixing bits 6-11 of an address, the enclave reduces the
possible cache sets where a block of data is being cached within a
slice to 16. If all enclaves loaded with the same binary monitor the
same 16 cache sets determined by a specific value of bits 6-11, each
of them can detect the presence of its clones—despite an adversary
that controls the OS and allocates the physical pages of the enclave.
We provide more details on cache memories and how cache-based
covert channels work in the extended version of the paper [58].

Therefore, CloneBuster defines a channel as a group of 16
cache sets, in principle allowing for up to 64 concurrent channels.
In the extended version of the paper [58],i we show that this choice
is optimal, since monitoring less than 16 sets may allow the OS to
execute multiple clones of an enclave and evade detection. Note,
however, that the channel selected by a given enclave (e.g., by fixing
bits 6-11 of the addresses to be monitored) must not be secret and,
in particular, security is not affected if the OS knows which channel
is being used by an enclave. In a real-world deployment, the OS may
even actively help enclave owners in selecting an unused channel
prior to attestation; in turn, the enclave owner uses attestation and
secret provisioning to instruct the enclave about which channel to
use. Note that the OS has no advantage in assigning two different
enclaves—loaded with different binaries—to the same channel as
this leads to a DoS. In this case, the two enclaves will (mistakenly)
detect a clone and take appropriate countermeasures (e.g., stop
their execution or report the problem to an external party like the
enclave owner). In practice, a malicious OS can easily DoS a process
running on its platform—regardless of whether CloneBuster is
used or not.

4.3.2 Building Eviction Sets. In order to build eviction sets, the
enclave must be aware of the specs of the CPU where it is deployed.
This includes the number of slices, the number of sets per slice, and
the number of ways per set. Such information must be hardcoded
in the enclave. Alternatively, the enclave owner can pass such
information to the enclave after the enclave has been deployed and
the owner has attested it.

Popular techniques to build eviction sets from within an en-
clave [137] require that the OS assigns contiguous memory to
enclaves. In our settings, a malicious OS may, however, assign
non-contiguous memory to the enclave. Therefore, we leverage
alternative techniques that rely on false dependencies on load op-
erations which are not under direct control of the OS [87]. Due to
lack of space, we show in the extended version of the paper [58]
that a malicious OS may evade detection if evictions sets are built
relying on the assumption that enclave memory is contiguous. In
particular, we show (using a SAT solver) that the OS can assign
virtual memory to two instances of the same enclave so that they
monitor different channels—effectively bypassing CloneBuster.

We leverage the technique of [87] to group data whose physical
addresses share the last 20 bits and then regroup that data into

Algorithm 1 Building the eviction sets in CloneBuster
Require: Memory byte array memArr[24MB];
Ensure: evictionSets[16][SLICES]
1: 𝑠𝑝𝑜𝑖𝑙𝑒𝑟𝐴𝑟𝑟 [256] [𝐿𝐼𝑀 ] ← {} ⊲ LIM depends on memArr size
2: 𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝𝑠 [16] [16 ∗ 𝐿𝐼𝑀 ] ← {}
3: 𝑒𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠 [16] [𝑆𝐿𝐼𝐶𝐸𝑆 ∗𝑊𝐴𝑌𝑆 ] ← {}
4: for 𝑖 = 0 to 256 do
5: 𝑐𝑜𝑛𝑡 ← 0
6: test_address = memArr[i*PAGE_SIZE + offset];
7: spoilerArr[i][cont++] = test_address;
8: for 𝑗 = (𝑖 + 1) to 24MB; j+=PAGE_SIZE; do
9: if aliasing(test_address,memArr[j*PAGE_SIZE]) then
10: spoilerArr[i][cont++] = memArr[j*PAGE_SIZE];
11: // Group the addresses with same set number
12: for 𝑖 = 0 to 16 do ⊲ Reduce before expand
13: 𝑐𝑜𝑛𝑡 ← 0 ⊲ it is 16 at the end of each iteration
14: test_array = spoilerArr[i][:];
15: cacheGroups[i][cont++] = test_array;
16: // Remove used data from the copy array
17: spoilerArrCopy← (spoilerArr - cacheGroups)
18: for 𝑗 = 𝑖 + 1 to 256 do
19: remove spoilerArr[j][:] from spoilerArrCopy;
20: if test_array is not evicted by spoilerArrCopy then

21: cacheGroups[i][cont++] = spoilerArr[j][:];
22: write spoilerArr[j][:] back at spoilerArrCopy;
23: for 𝑗 = 16 to 256 do ⊲ Find remaining groups
24: test_array = spoilerArr[j][:];
25: if test_array is evicted by cacheGroups[i][:] then
26: cacheGroups[i][cont++] = test_array;
27: for 𝑖 = 0 to 16 do
28: 𝑒𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠 [𝑖 ] [:] = reduce(𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝𝑠 [𝑖 ] [:] )

groups that share the last 16 bits (i.e. groups that share the cache set
number). Since 12 out of these 20 bits are controlled by the enclave,
we can create 28 = 256 different groups that we call “spoiler groups”.
This step, in turn, ensures that we have enough distinct addresses
to build the necessary eviction sets. The spoiler groups are then
regrouped into cache groups, and finally, cache groups are reduced
and arranged so that all the slices are covered.

The process is summarized in Algorithm 1. We use an array of
24MB—twice the size of our cachememory—so to ensure that all pos-
sible eviction sets can be built. We also point out that when building
the “spoiler groups” it should be verified that the 𝑡𝑒𝑠𝑡_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 (line
6) is not already present in the 𝑠𝑝𝑜𝑖𝑙𝑒𝑟𝐴𝑟𝑟 . Similarly, the 𝑡𝑒𝑠𝑡_𝑎𝑟𝑟𝑎𝑦
should not be part of the 𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝𝑠 (line 14). These checks have
been omitted in the pseudo-code for simplicity and brevity.

The 𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝𝑠 array is filled in two stages. In the first stage
(loop at line 18), a group of arrays or a group of addresses with
the same set number that can occupy all the respective slices is
obtained. At this point, the data in the 𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝𝑠 could be re-
arranged per slices and then reduced to its minimum core (i.e. it
should include as many addresses as ways of the cache sets), which
is the goal of this algorithm. That is, one could directly execute
the steps at line 27. On the other hand, the second stage (lines
23-26) ensures that the OS has assigned to the enclave the 28 = 256
addresses corresponding to the aforementioned 8 bits of a “spoiler
address”. Besides, the distances between addresses included in the
𝑠𝑝𝑜𝑖𝑙𝑒𝑟𝐴𝑟𝑟 and between the indexes of each 𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝 show if
the memory assigned by the OS is linear and if there are any gaps,
i.e., unassigned pages.

We note that by having 256 different groups of addresses, we
ensure that all the possible set numbers are covered. Moreover, by
re-grouping those 256 groups into the 16 groups that share the
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same cache number while ensuring all the cache slices are covered,
we guarantee that CloneBuster could map any cache location.
In case any of the tests fail, this offers compelling evidence that
the OS is manipulating memory to alter the expected view of the
memory by CloneBuster—in this case, the enclave should refuse
to execute. It is worth noting that the value of the offset used in line
6 is chosen so that the virtual address of𝑚𝑒𝑚𝐴𝑟𝑟 [𝑜 𝑓 𝑓 𝑠𝑒𝑡] has its
bits 6-11 equal to the selected channel, if the number of cores is not
a power of two due to its slice selection function [86, 158]. If, on the
contrary, the number of cores is a power of two, the aforementioned
slice selection function [114] makes it possible to use any value
for the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 , but it should be changed afterwards (e.g during the
reduction phase). Finally, the algorithm used to obtain theminimum-
size eviction sets from a bigger set of addresses mapping to the
same set (𝑐𝑎𝑐ℎ𝑒𝐺𝑟𝑜𝑢𝑝𝑠), could be any of the ones proposed in the
literature, e.g., [108, 120], that mainly remove elements from the
array until it has the same size as ways of the cache, while ensuring
it is still able to completely fill the set. In practice, we have taken
an approach similar to [108].

4.4 Phase 2: Monitoring

During the monitoring phase, CloneBuster reads the data of the
sets to be monitored in a loop. Namely, CloneBuster measures
the access times to each of the data blocks in the sets, in order to
determine whether they are still cached (hit) or not (miss). The
sequences of cache hits or misses—that we refer to as “observation
windows”—are fed to a classification algorithm that decides whether
a clone is running on the same host. Like in [137], we leverage a
counting thread to measure access time: we fetch the value of the
counter before and after reading an address. If the difference of
the two counter values is greater than a pre-defined threshold, we
conclude that the data was not cached and treats it as a cache miss;
otherwise, we assume a cache hit.

The threshold to distinguish cache hits from misses is machine
dependent; it can be pre-computed if the hardware where the en-
clave is deployed is known a priori. Otherwise, the main thread
can compute the threshold by flushing and reloading a block of
data (cache miss time), reading again that block of data which will
be in the cache (cache hit time), and repeating this process while
computing the mean times.

Note that the monitoring and counting threads should run con-
tinuously, whenever the enclave is executing a critical piece of
code where no clones must be allowed (e.g., between a read and
an increment of a monotonic counter). If the monitoring/counting
thread is interrupted, the obtained measurements will not match
the expected ones, i.e., the expected time for a hit or the one for a
miss. We treat such an event as evidence that the OS is manipulat-
ing the enclave with malicious intent and take countermeasures
(e.g., halt the execution of the enclave).

Note that before the monitoring phase can actually start, the
enclave has to pre-fetch the data to be monitored into the cache
to ensure that all the observed cache misses are due to evictions
caused by other processes.

We point out that there is no need for an enclave to fill all the
ways of the monitored cache sets. In particular, given a𝑊 -way
set-associative cache, clones will evict from cache each other’s

data—hence, will detect each other—as long as the number of ways
filled per cache set, namely𝑚, is chosen such that (𝑊 /2) < 𝑚 ≤𝑊 .
Further, if𝑚 =𝑊 , the enclave may detect evictions due to benign
applications that happen to use the same cache sets and output a
false positive.

5 SECURITY ANALYSIS

Knowledge of CPU specifications: Note that CloneBuster re-
quires the specifications of the processors where it is to be deployed.
In particular, CloneBuster requires information on the cache, so
to build eviction sets. Naturally, a malicious cloud provider may
not faithfully report the CPU model where the enclave is going to
be deployed. However, we believe that a rational cloud provider
has no incentive to provide fabricated information on its CPUs.
This is because if the malicious behavior of the cloud is exposed, its
reputation may be severely affected. In a nutshell, CloneBuster is
not designed to counter a malicious cloud provider, but rather an
adversary that compromises the OS on the cloud machines.

Changing channel assignment: Recall that the goal of the adver-
sary is to execute two (or multiple) clones—enclaves loaded with
the same binary—while evading the clone-detection mechanism.
One possible attack strategy is to assign two different channels
(i.e., two different groups of cache sets) to two enclave clones. We
eliminate this option by ensuring that any two enclaves, loaded
with the same binary, monitor the same group of cache sets. In
particular, if all enclaves with the same binary fix bits 6-11 of the
addresses to be monitored, each of those addresses can only be
mapped to one out of 16 cache sets. By monitoring all of the 16
cache sets, we guarantee that two clones cannot be assigned to dif-
ferent channels. Note that monitoring less than 16 cache sets—out
of those determined by fixing bits 6-11 of an address—may allow the
adversary to evade the detection mechanism. In particular, we used
a SAT-solver (SATisPy [79], which in turn is a wrapper of MiniSAT
[73]) to simulate memory mapping and to show that, if less than 16
cache sets are monitored, the OS can find multiple mappings that
effectively assign clones to different channels. We provide more
details on this in the extended version of the paper [58].

Side-stepping the enclave: Alternatively, the adversary might
leverage the ability to control the execution of the enclave at in-
struction level, e.g., by using frameworks such as SGX-Step [150].
By choosing which of the clones is making progress, one or few
instructions at a time, the adversary may prevent one enclave in-
stance from detecting the presence of the other. We argue that such
strategy is not viable because the cache as a covert channel allows
two enclaves to detect each other, even if they are not running at
the same time. Take, for example, the BI-SGX enclave described
in Section 3. The enclave uses monotonic counters and a forking
attack requires two clones, say 𝐸 and 𝐸′, such that the following
instructions are executed in a sequence: (a) 𝐸 calls Increment(MC),
(b) 𝐸′ calls Increment(MC), (c) 𝐸 calls Read(MC), and finally (d) 𝐸′
calls Read(MC). The outcome is two sealed data items, one from
𝐸 and the other from 𝐸′, with the same value of the monotonic
counter. This attack can be mitigated by using CloneBuster. In
particular, if 𝐸 runs first, it writes its fingerprint to the cache. Next
𝐸′ runs and overwrites with its own fingerprint what enclave 𝐸 had
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written into the cache. Finally, 𝐸 resumes, detects that its finger-
print into the cache was overwritten and determines that a clone
is running. Once a clone has been detected, the enclave could take
appropriate countermeasures (e.g., refuse to seal data). Notice that
other interruption strategies, besides single-stepping the enclave,
could be used by the adversary. For instance, the adversary might
try to infrequently interrupt either clones in an attempt to prevent
detection. While such attacks could result in a false positive (raising
an alarm by CloneBuster), it remains unclear whether CloneB-
uster can comprehensively detect all such attack strategies.

Polluting the channel: Note that “polluting” the cache-based
channel is not a viable option for a malicious OS. If the OS deliber-
ately touches the cache lines used by CloneBuster, the detection
mechanism (wrongly) infers that a clone is running thereby gen-
erating a false positive. Upon detection, the enclave may, e.g., halt
its execution but no fork would take place. We confirm this by
experiments in Section 6.

Slowing down threads: Further, the OS may as well try to make a
cache miss look like a hit so that the enclave running CloneBuster
fails to detect its clone. To do so, a malicious OS needs to slow down
the counting thread while the main thread measures access times to
its eviction set. The OS can achieve this by scheduling the counting
thread on a core along with other applications. This strategy would
slow down the counting thread and result in anomalous readings
by the main thread. Here, the main thread reads the counter and
computes an elapsed time value that does not match the elapsed
time of a cache miss nor it matched the elapsed time of a cache
miss. The current version of CloneBuster does not address such
attack. However, we believe that it could be addressed by having
the main thread raising an alarm every time it detects an anoma-
lous reading of the counter. We have empirically verified this by
scheduling threads on the same core where the counting thread was
running and the main thread witnessed no increases of the counter
variable. Similarly, if the adversary slows down the main thread,
the corresponding AEX could be detected by monitoring the SSA
area as done in previous work [119]; once the thread resumes and
detects the asynchronous exit, it could raise an alarm.

Modifying core frequency: Another approach to make a cache
miss look like a hit would be to change the frequency of the differ-
ent cores available. Concretely, the adversary may run the counting
thread on a slower core and the main thread on a faster one.We note
that there is no SGX-enabled processor with per-core frequency
scaling; this feature seems to be available only on some HPC pro-
cessors that do not feature SGX [82, 134]. Hence, if the OS changes
the frequency of a core in an SGX-capable processor, it would cause
a frequency change on all other cores [126, 141]. We have empiri-
cally verified this in our platform. Even assuming future processors
with SGX and per-core frequency scaling [85], some time elapses
between the instant when the OS makes a frequency change re-
quest until this change is effective. As reported in [82, 134], this
time interval amounts to roughly 500 𝜇s; in contrast a cache miss
only takes around 0.15 𝜇s. Thus, adding a periodic re-calibration
phase where the main thread measures the time of a cache miss,
may prevent the OS from scaling the frequency. In particular, if
the re-calibration phase occurs every 500 𝜇s, frequency scaling by

the OS could be spotted. As an alternative strategy, the OS may
configure core frequencies in advance, and then move the count-
ing thread across cores. Again this could be spotted with periodic
re-calibration.

Changing memory mapping: A malicious OS may change the
physical to virtual mapping by leveraging its ability to control
some of the bits of an address that determine the cache set (bits
12-15). We note that the enclave fixes bits 6-11 and monitors all
sets corresponding to all configurations of the remaining 4 bits. As
an example, fixed bits 6-11 as 010101, then CloneBuster monitors
the sets given as XXXX010101 where XXXX ranges from 0000
to 1111. In case the OS changes the mapping between a virtual
address and a physical address (e.g., by swapping pages using the
EWB instruction) an address would move from one of the sets
monitored by CloneBuster to another set that is also monitored by
CloneBuster. In this case, CloneBuster may end up polluting its
own cache sets. If the number of addresses that underwent a change
set is high, CloneBusterwould mistakenly detect a clone and raise
an alarm. This is another case of false positive and, as mentioned
before, false positives are not in the attacker’s best interest. Changes
to the mapping between physical and virtual addresses may also be
carried differently, e.g., by adding and removing pages via EDMM
(available for SGX 2.0). While we could not verify this strategy on
SGX 2.0, we speculate, however, that such changes made to the page
mappings using EDMM are likely to trigger a notification before
becoming effective, which, in turn, can be detected byCloneBuster
(see [115] page 3, Section 3.1 for more details).

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation Setup

We implemented a prototype of CloneBuster, including the code
for the creation of the eviction sets (and some tests to ensure they
have been properly built) and the counting thread that serves as a
clock. Our implementation accounts for approximately 800 LoC.

We deployed the prototype on a Xeon E-2176G (12 vCores at
3.70GHz, 64 GB RAM, and a 12 MB 16-way cache). To assess the
performance of CloneBuster, we evaluated the impact on perfor-
mance of (i) the choice of classification algorithm used to infer the
presence of a clone given a sequence of cache hits and misses, (ii)
the number of ways per set to be monitored𝑚, and (iii) the size of
the observation window𝑤 .

We evaluate performance in an ideal scenario where no other ap-
plication apart from the enclave (and possibly its clone) is running,
as well as in a more realistic scenario where background processes—
taken from the Phoronix benchmark suite [101]—are running on
the host at the same time. In scenarios featuring background pro-
cesses, we run as many instances of the benchmark as needed to
reach a total CPU usage close to 100%. For each configuration of
parameters and background process, we collected 100.000 samples
while the enclave and a clone are running, and the same number of
samples while the enclave is running without clones. We labeled
these samples accordingly and obtained multiple datasets of 200.000
samples per scenario.
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Figure 7: F1 score of various detection algorithms for different values of𝑤 and𝑚. Figures on the left show the performance of

CloneBuster with no other application; figures on the right show the performance when x265 video encoder runs in the

background.

6.2 Evaluation Results

We assess the performance of CloneBuster by means of F1 score.
We additionally report in Tables 1 and 2 (see Appendix) the asso-
ciated false positive and negative rates for each experiment. Each
data point represents the mean of 10-fold cross-validation.

Choice of the Detection Algorithm. We evaluate the perfor-
mance of different detection algorithms in inferring the presence of
a clone, given a sequence of cache hits and misses. In particular, we
considered a number of classifiers included in Scikit-learn [121] as
well as a simple threshold-based algorithm. For the latter, the thresh-
old 𝑡 of cache misses for the detector to report a clone is selected
empirically, as the one that allows to obtain the best performance.

Figure 7 compares the performance of various detection algo-
rithms for 𝑤 ∈ [1, 2024] and for𝑚 ∈ {9, 12, 16} both in the ideal
scenario with no background processes and in a realistic scenario
where processes are running in background. For the latter scenario,
we use x265 video encoder—the application with the most inten-
sive memory use among the ones we have tested from the Phoronix
benchmark suite—as the background process.

The comparison between the plots on the left side of Figure 7
(with no background process) and the ones on the right side of
the same figure (with x265 video encoder running in parallel)
allows us to assess the impact of background processes on the
performance.

We note that the threshold-based algorithm is among the ones
with higher F1 scores, for most configuration of𝑤 and𝑚. Indeed,

the threshold-based detector emerges as the most suitable choice—
owing to its simplicity, small code-size, and F1 score (and its associ-
ated false positive/negative rates).

In the extended version of the paper [58], we provide additional
results with alternative detection algorithms and background ap-
plications of the Phoronix benchmark suite.

Impact of observation window size𝑤 . Figure 7 also shows the
impact of the size of the observation window 𝑤 on the F1 score.
Clearly, increasing 𝑤 leads to better performance. In particular,
a small observation window may only account for cache misses
due to benign applications running on the same host, and may
cause false positives. For example, by using the threshold-based
classifier with𝑤 = 1, the F1 score for𝑚 = 9,𝑚 = 12, and𝑚 = 16 is
0.884, 0.906, and 0.829, respectively in an ideal scenario; when x265
video encoder is running in the background, F1 scores are 0.801,
0.907, and 0.757 for𝑚 = 9,𝑚 = 12, and𝑚 = 16, respectively. By
increasing𝑤 , classification becomes more robust: with𝑤 = 1024,
F1 score is 0.996 (𝑚 = 9), 0.999 (𝑚 = 12), and 0.990 (𝑚 = 16) in the
scenario where no application is running in the background and
reaches 0.999 (𝑚 = 9), 0.994 (𝑚 = 12), and 0.982 (𝑚 = 16) when
x265 video encoder runs in the background.

We also note that 𝑤 has a direct impact on detection latency,
since it determines the time to fill the observation window with
cache hits and misses—before the window is fed to the classifier.
For instance, given that measuring a cache miss on the test machine
takes approximately 450 cycles, setting𝑤 = 256 results in detection
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Figure 8: Mean penalty (in achieved throughput) due to CloneBuster for different WolfSSL applications (a) and BI-SGX (b).
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Figure 9: F1 score of the threshold based detection algorithm for different values of𝑤 and𝑚 for attacks against BI-SGX. Figure

on the left show the performance of CloneBuster with no other application; figure on the right show the performance when

x265 video encoder runs in the background.
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amount of cache lines. 𝑠 refers to thewaiting interval between

injections of noise

latency of roughly 115k cycles. To put this number in context, com-
puting an RSA-2048 signature with openssl on the test machine
requires 17390k cycles.

Impact of number of ways𝑚. As expected, the detector perfor-
mance in a scenariowith no background processes is onlymarginally
affected by𝑚—because no other process is polluting the cache. In
scenarios with background processes, the impact of𝑚 on the F1
score is more prominent since those processes may be polluting
the monitored lines and may be causing false positives.

Indeed,𝑚 = 16 resulted in the highest number of false positives
for most of the configurations tested (cf. Table 2). On the other hand,
performance difference between𝑚 = 9 and𝑚 = 12, depends on the
process running in the background. For instance, when𝑤 = 256, as
shown in Tables 1 and 2, the number of false positives is generally
higher for𝑚 = 12 and the number of false negatives is generally

higher for𝑚 = 9. Since we consider false negatives more damaging
than false positives, we opt for𝑚 = 12.

Impact of malicious noise on detection. As discussed in Sec-
tion 5, a malicious OS might artificially add noise to the channel.
We have tested such scenario with the following experiment. We
run CloneBuster (with the threshold-based classifier,𝑤 = 64 and
𝑚 = 12) while increasing both the number of lines in the channel
polluted by the OS, as well as the frequency with which the OS
pollutes those lines. The number of lines polluted by the OS ranged
from 1 to 2048 (i.e., from one to all lines of the cache sets monitored
by CloneBuster); the OS injected noise in intervals of 0, 25, 50,
and 100 𝜇s. Figure 10 shows the impact of such strategy on the
false positive rate. Our results show that if the adversary can pol-
lute more than 768 cache lines, CloneBuster always results in a
false positive. Conversely, when the adversary pollutes less than
192 cache lines, the resulting FPR is very low. On the other hand,
our experiments show that this strategy does not impact the false
negative rate of CloneBuster (it consistently remains between 0
and 0.009).

Performance overhead for WolfSSL. We use applications of
WolfSSL [155]—a suite of cryptographic applications ported to
SGX—as exemplary applications to assess the overhead of CloneB-
uster. For each application in the WolfSSL benchmark, we run the
vanilla version as baseline and compare its throughput with the
one of the same application when enhanced with CloneBuster.

Figure 8 (a) depicts the performance penalty incurred for each
application in WolfSSL, normalized with respect to the baseline.
Each data point is averaged over 100 independent runs. Here, “clock”
refers to the performance of the application instrumented with
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CloneBuster but with only the counting thread running, whereas
“m=12” and “m=16” refer to the performance of the application
when both the counting and main threads of CloneBuster are
running. The mean performance penalty across all applications of
theWolfSSL benchmark is 2.58± 0.17 % if just the counting thread is
running, and 4.82 ± 0.91% and 4.88 ± 0.90% if the countermeasure is
running with 12 and 16 monitored ways, respectively. We conclude
that parameter 𝑚 has little effect on the overhead and that the
performance penalty due CloneBuster can be tolerated by most
applications.

Evaluating CloneBuster when used with BI-SGX.We now
evaluate the performance penalty incurred by BI-SGX [131] when
CloneBuster is used to detect attacks. Figure 8 (b) shows the
penalty for the two main functions of BI-SGX, namely seal_data
and run_interpreter (Figure 3). We measure the time for each
function to execute with input data comprised of 5000 characters.
The performance penalty is normalized with respect to the baseline
(i.e., BI-SGX without CloneBuster) and we report the average over
100 runs. The mean performance penalty was measured to be 1.99
± 2.15% if just the counting thread is running, and 4.24 ± 4.39% and
4.30 ± 4.33% if CloneBuster is running and monitoring 12 or 16
ways, respectively. In Figure 9, we asses the performance of Clone-
Buster in detecting clones of BI-SGX. We use the threshold-based
detection algorithms for𝑤 ∈ [1, 1024] and for𝑚 ∈ {9, 12, 16}, both
in the ideal scenario with no background processes and in a realistic
scenario where a background process (x265 video encoder) runs
in the background. We collect samples for 10,000 executions of BI-
SGX running in a benign setting and while carrying out the attack
described in Section 3.3, respectively. Figure 9 shows that even with
background noise, the F1 score reaches 0.999 for 𝑤 ≥ 64, with a
false positive rate of 0.0015 and a false negative rate of 0.0004.

7 CONCLUDING REMARKS

In this work, we addressed the problem of forking attacks against
Intel SGX by cloning the victim enclave. We analyzed 72 SGX-based
applications and found that roughly 20% are vulnerable to such
attacks, including those that rely on monotonic counters to prevent
forking attacks based on rollbacks. A comprehensive solution to
forking attacks requires a trusted third party that, unfortunately,
are hard to find in real-world deployments.

To address this problem, we introduced CloneBuster, the first
practical clone detection mechanism for SGX enclaves that does not
rely on a trusted third party. We analyzed the security of CloneB-
uster and showed that a malicious OS cannot bypass it to spawn
cloneswithout detection.We implementedCloneBuster and evalu-
ated its performance in existing SGX applications and under various
realistic workloads. Our evaluation results show that CloneBuster
achieves high accuracy in detecting clones, only incurs a marginal
performance overheard, and adds up to 800 LoC to the TCB.
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Table 3, we summarized our analysis of SGX applications. Here,
we excluded libraries, runtime frameworks, and projects without
documentation. We divide the remaining ones based on their type
(Machine Learning, Blockchain, Encrypted Databases, ...). For each
application, we report whether the code is available, whether they
are vulnerable to rollback attacks, and whether they are vulnerable
to cloning attacks (highlighted in gray). In case the application is not
vulnerable to a specific attack, we report the countermeasure (MC is
monotonic counters, TTP is trusted third party). We use N/A in case
the attack is not applicable. In case of applications vulnerable to
cloning attacks, we categorize the attack type (A, B, C) and provide
more details in the extended version of the paper [58]. Proof of
Luck (★) is not vulnerable to cloning because it books all MCs on
the platform at startup; as a result, no clone can be started but this
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Threshold Naive Bayes Neural Network

w=1 w=4 w=16 w=64 w=256 w=1024 w=1 w=4 w=16 w=64 w=256 w=1024 w=1 w=4 w=16 w=64 w=256 w=1024

Baseline
m=9 0.113 0.087 0.051 0.035 0.023 0.012 0.102 0.078 0.039 0.021 0.022 0.004 0.103 0.068 0.027 0.009 0.007 0.001
m=12 0.097 0.024 0.002 0.001 0.001 0.000 0.098 0.045 0.009 0.009 0.005 0.004 0.098 0.030 0.004 0.003 0.003 0.000
m=16 0.158 0.107 0.064 0.021 0.012 0.001 0.113 0.103 0.021 0.011 0.003 0.006 0.114 0.102 0.021 0.008 0.002 0.001

x265
m=9 0.189 0.108 0.048 0.007 0.002 0.001 0.182 0.119 0.061 0.034 0.019 0.015 0.189 0.108 0.049 0.038 0.014 0.009
m=12 0.082 0.043 0.021 0.021 0.003 0.002 0.091 0.045 0.027 0.021 0.012 0.003 0.092 0.039 0.016 0.010 0.006 0.004
m=16 0.198 0.156 0.153 0.102 0.012 0.009 0.210 0.178 0.134 0.098 0.041 0.009 0.211 0.189 0.123 0.085 0.054 0.023

sql
m=9 0.208 0.098 0.053 0.041 0.010 0.005 0.212 0.102 0.056 0.021 0.011 0.008 0.199 0.191 0.042 0.012 0.007 0.001
m=12 0.043 0.021 0.019 0.018 0.010 0.006 0.045 0.023 0.018 0.008 0.006 0.004 0.045 0.023 0.018 0.009 0.006 0.003
m=16 0.198 0.134 0.124 0.098 0.052 0.018 0.187 0.152 0.146 0.127 0.078 0.012 0.187 0.160 0.129 0.085 0.013 0.013

opencv
m=9 0.223 0.102 0.072 0.065 0.043 0.021 0.161 0.126 0.087 0.081 0.047 0.030 0.161 0.125 0.086 0.075 0.039 0.027
m=12 0.091 0.065 0.058 0.045 0.032 0.012 0.090 0.062 0.054 0.042 0.031 0.011 0.090 0.062 0.054 0.039 0.021 0.010
m=16 0.320 0.213 0.211 0.193 0.072 0.034 0.310 0.223 0.132 0.092 0.089 0.032 0.310 0.218 0.081 0.070 0.034 0.021

gcc
m=9 0.163 0.124 0.073 0.043 0.032 0.028 0.159 0.099 0.050 0.032 0.017 0.017 0.159 0.099 0.056 0.024 0.018 0.017
m=12 0.068 0.031 0.019 0.009 0.006 0.005 0.069 0.026 0.018 0.013 0.013 0.007 0.069 0.026 0.017 0.012 0.013 0.010
m=16 0.190 0.176 0.132 0.102 0.087 0.054 0.192 0.162 0.112 0.096 0.087 0.017 0.191 0.161 0.103 0.087 0.068 0.036

cloud
m=9 0.067 0.059 0.031 0.023 0.017 0.010 0.079 0.045 0.031 0.032 0.020 0.010 0.081 0.043 0.025 0.021 0.009 0.006
m=12 0.100 0.071 0.047 0.018 0.007 0.003 0.091 0.040 0.032 0.012 0.012 0.002 0.083 0.032 0.023 0.009 0.004 0.003
m=16 0.142 0.090 0.061 0.011 0.009 0.009 0.109 0.089 0.056 0.043 0.021 0.013 0.102 0.056 0.049 0.037 0.013 0.006

Table 1: False negative rates for various detection algorithms for different values of𝑤 and𝑚. “Baseline” refers to the scenario

where no background application is running, whereas the others refer to different applications running in the background.

Threshold Naive Bayes Neural Network

w=1 w=4 w=16 w=64 w=256 w=1024 w=1 w=4 w=16 w=64 w=256 w=1024 w=1 w=4 w=16 w=64 w=256 w=1024

Baseline
m=9 0.120 0.055 0.024 0.008 0.007 0.004 0.134 0.048 0.027 0.019 0.010 0.008 0.132 0.059 0.027 0.009 0.007 0.001
m=12 0.090 0.047 0.010 0.005 0.003 0.002 0.089 0.041 0.009 0.009 0.011 0.006 0.089 0.032 0.004 0.003 0.003 0.002
m=16 0.189 0.103 0.045 0.023 0.020 0.019 0.253 0.107 0.019 0.015 0.007 0.008 0.252 0.111 0.027 0.010 0.010 0.003

x265
m=9 0.214 0.099 0.059 0.006 0.004 0.001 0.224 0.117 0.059 0.032 0.019 0.015 0.214 0.101 0.047 0.028 0.012 0.009
m=12 0.106 0.039 0.033 0.031 0.015 0.010 0.095 0.037 0.031 0.033 0.018 0.013 0.094 0.043 0.039 0.016 0.012 0.006
m=16 0.317 0.263 0.172 0.143 0.028 0.027 0.297 0.230 0.218 0.105 0.071 0.027 0.296 0.229 0.201 0.089 0.067 0.054

sql
m=9 0.055 0.052 0.038 0.022 0.010 0.005 0.085 0.056 0.027 0.003 0.005 0.002 0.071 0.073 0.038 0.004 0.003 0.003
m=12 0.068 0.033 0.025 0.036 0.016 0.010 0.066 0.031 0.028 0.016 0.014 0.006 0.041 0.031 0.026 0.021 0.014 0.009
m=16 0.173 0.181 0.176 0.098 0.037 0.022 0.189 0.169 0.167 0.122 0.054 0.026 0.189 0.148 0.157 0.089 0.069 0.038

opencv
m=9 0.065 0.050 0.044 0.040 0.026 0.005 0.124 0.092 0.063 0.053 0.043 0.028 0.121 0.096 0.043 0.029 0.018 0.015
m=12 0.104 0.076 0.069 0.039 0.034 0.020 0.106 0.079 0.075 0.046 0.041 0.021 0.106 0.079 0.071 0.027 0.033 0.016
m=16 0.350 0.244 0.012 0.021 0.083 0.040 0.370 0.228 0.132 0.160 0.085 0.063 0.370 0.236 0.077 0.066 0.055 0.037

gcc
m=9 0.132 0.051 0.016 0.033 0.024 0.018 0.138 0.071 0.050 0.012 0.017 0.017 0.138 0.071 0.027 0.004 0.016 0.009
m=12 0.070 0.023 0.021 0.023 0.024 0.013 0.069 0.034 0.030 0.067 0.021 0.009 0.069 0.028 0.023 0.026 0.021 0.012
m=16 0.192 0.143 0.118 0.080 0.083 0.062 0.190 0.164 0.132 0.100 0.061 0.013 0.191 0.163 0.107 0.078 0.068 0.036

cloud
m=9 0.067 0.024 0.017 0.015 0.007 0.010 0.053 0.020 0.001 0.024 0.008 0.006 0.051 0.022 0.009 0.011 0.005 0.004
m=12 0.087 0.062 0.047 0.022 0.013 0.011 0.098 0.080 0.055 0.016 0.014 0.016 0.107 0.089 0.067 0.015 0.012 0.013
m=16 0.147 0.077 0.070 0.027 0.017 0.015 0.191 0.078 0.075 0.066 0.035 0.031 0.200 0.106 0.081 0.069 0.027 0.014

Table 2: False positive rates for various detection algorithms for different values of𝑤 and𝑚. “Baseline” refers to the scenario

where no background application is running, whereas the others refer to different applications running in the background.

Project
Source code Vulnerable to

Project
Source code Vulnerable to

available Rollback Cloning available Rollback Cloning

Encrypted Databases and Key-value Stores X-Search [36, 117] 𝑎𝑝 Yes N/A Yes (C)
Aria [156] 𝑝 No N/A Yes (A) Blockchains

Avocado [38, 52] 𝑎 Yes N/A Yes (A) BITE [113] 𝑝 No No (MC) N/A
Enclage [144] 𝑝 No N/A Yes (A) BLOXY [130] 𝑝 No N/A N/A
EnclaveCache [61] 𝑝 No Yes Yes (B) Ekiden [6, 65] 𝑎 Yes No (TTP) No (TTP)
EnclaveDB [125] 𝑝 No No (MC) No (TTP) Hybrids on Steroids [54] 𝑝 No No (MC+TTP) No (TTP)
HardIDX [77] 𝑝 No Yes N/A MobileCoin [41, 76] 𝑎 Yes No (TTP) No (TTP)
NeXUS [7, 69] 𝑝 Yes No (MC) Yes (B) Oasis [19] 𝑎 Yes No (TTP) No (TTP)
ObliDB [8, 74] 𝑝 Yes N/A Yes (A) Obscuro [9, 149] 𝑎 Yes N/A N/A
PESOS [96] 𝑝 No N/A N/A Phala Network [27, 159] 𝑎 Yes No (TTP) No (TTP)
SeGShare [78] 𝑝 No No (MC) N/A Private Chaincode [56, 84] 𝑎 Yes N/A N/A
ShieldStore [22, 93] 𝑎𝑝 Yes No (MC) Yes (B) Private Data Objects [55, 99] 𝑎 Yes No (TTP) No (TTP)
SPEICHER [1, 53] 𝑎 Yes No (MC) No (TTP) Proof of Luck [2, 116] 𝑎 Yes N/A No (★)
STANlite [35, 132] 𝑎𝑝 Yes N/A Yes (A) Teechain [104, 106] 𝑎𝑝 Yes No (MC) N/A
StealthDB [15, 152] 𝑎 Yes Yes Yes (B) Town Crier [4, 161] 𝑎 Yes No (TTP) No (TTP)

Applications Troxy [54] 𝑝 No N/A No (TTP)
BI-SGX [16] 𝑎 Yes No (MC) Yes (B) Twilight [46, 71] 𝑎 Yes N/A N/A
CACIC [49, 145] 𝑎 Yes Yes Yes (B) Machine Learning

DEBE [44, 157] 𝑎 Yes N/A N/A Confidential ML [90] 𝑎 Yes N/A N/A
HySec-Flow [39, 154] 𝑎 Yes N/A N/A DP-GBDT [109] 𝑎 Yes No (MC) N/A
PrivaTube [66] 𝑝 No N/A Yes (C) Plinius [29, 160] 𝑎 Yes No (MC) N/A
REX [47, 68] 𝑎 Yes N/A N/A secureTF [127] 𝑝 No N/A N/A
SGXDedup [37, 128] 𝑎 Yes N/A N/A Secure XGBoost [31, 102] 𝑎 Yes N/A N/A
Signal CDS [11, 110] 𝑎 Yes N/A N/A Slalom [147, 148] 𝑎𝑝 Yes N/A N/A
SkSES [23, 95] 𝑎 No N/A N/A SOTER [43, 138] 𝑎 Yes N/A N/A
SMac [34, 70] 𝑎 Yes N/A N/A Network

TresorSGX [5, 129] 𝑎 Yes N/A N/A ConsenSGX [26, 133] 𝑎 No N/A N/A
Key + Password Management CYCLOSA [122] 𝑝 No N/A N/A

DelegaTEE [112] 𝑝 No No (MC) N/A ENDBOX [80] 𝑎𝑝 No N/A N/A
FeIDo [45, 135] 𝑎 Yes N/A N/A LightBox [18, 72] 𝑎𝑝 Yes N/A N/A
Keys in Clouds [17, 98] 𝑎 Yes No (MC) N/A SENG [32, 136] 𝑎 Yes N/A N/A
SafeKeeper [21, 97] 𝑎 Yes No (MC) N/A SGX CBR [123] 𝑝 No N/A N/A
SGX-KMS [12, 59] 𝑎 Yes Yes Yes (B) SGX-Tor [14, 92] 𝑎𝑝 Yes Yes N/A

Private Search TEE V2V [48, 88] 𝑎 No N/A N/A
BISEN [25, 75] 𝑎 Yes N/A N/A MACSec [94] 𝑎 Yes No (MC) N/A
DeSearch [40, 103] 𝑎 Yes N/A N/A S-NFV [139] 𝑝 No N/A N/A
Maiden [33, 153] 𝑎 Yes N/A N/A SafeBricks [3, 124] 𝑎𝑝 Yes N/A N/A
POSUP [20, 83] 𝑎 Yes N/A N/A SELIS-PubSub [28, 51] 𝑝 Yes N/A N/A
QShield [30, 64] 𝑎 Yes N/A N/A Data Analytics

Snoopy [42, 67] 𝑎 Yes No (MC) N/A Opaque [10, 162] 𝑎 Yes No (TTP) No (TTP)

Table 3: Summary of our analysis of SGX applications. We analysed SGX applications listed in [13] (superscript 𝑝 next to the

citation) and listed in [24] (superscript 𝑎 next to the citation).
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