
Continuous-Discrete Message Passing for Graph Logic Reasoning

Cristóbal Corvalán 1 Francesco Alesiani 1 Markus Zopf 1

Abstract
The message-passing principle is used in the most
popular neural networks for graph-structured data.
However, current message-passing approaches
use black-box neural models that transform fea-
tures over continuous domain, thus limiting the
reasoning capability of GNNs. Traditional neural
networks fail to model reasoning over discrete
variables. In this work, we explore a novel type
of message passing based on a differentiable sat-
isfiability solver. Our model learns logical rules
that encode which and how messages are passed
from one node to another node. The rules are
learned in a relaxed continuous space, which ren-
ders the training process end-to-end differentiable
and thus enables standard gradient-based train-
ing. Our experiments show that MAXSAT-GNN
learns arithmetic operations and that is on par
with state-of-the-art GNNs, when tested on graph
structured data.

1. Introduction
Graph-structured data can be found in many domains such
as biology, chemistry, and computer science Bronstein et al.
(2021); Scarselli et al. (2008). Consequently, machine learn-
ing for graph-structured data is gaining more interest from
the machine learning community.

A key component of neural networks for graph-structured
data, so-called graph neural networks, is the message pass-
ing principle Gilmer et al. (2017). The key idea of message
passing is to exchange messages between nodes in a graph
such that representations for nodes or the graph can be
learned. The obtained representations are used to address
tasks such as node classification Kipf and Welling (2016),
graph classification Errica et al. (2019), and missing node
feature prediction Rossi et al. (2021).

*Equal contribution 1NEC Laboratories Europe, Heidel-
berg, Germany. Correspondence to: Francesco Alesiani
<Francesco.Alesiani@neclab.eu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Even though message passing is used in many graph neu-
ral networks, it is far from perfect. On the contrary, sev-
eral issues with message passing have been reported in
prior works. While current graph neural networks exhibit
over-smoothing Nt and Maehara (2019); Chen et al. (2020),
over-squashing Topping et al. (2021), under-reaching Alon
and Yahav (2020) or limited expressive power Morris et al.
(2019); Maron et al. (2019); GNNs also provide limited
graph reasoning capabilities, since features are manipulated
over continuous domain. In addition to these short hands,
as we show in our experiments (subsection 4.2), traditional
neural network fails to reason over discrete variables (or
combinatorial problems Pogančić et al. (2019); Cappart
et al. (2021)), as for example in learning and generalizing
elementary arithmetic operations.

In this work, we explore an alternative to standard mes-
sage passing. We propose to learn logic rules (which could
model for example binary arithmetics) end-to-end with a
differentiable satisfiability solver to encode how messages
are distributed within the graph. By modeling the node fea-
tures as logical variables, we describe the relationship of
those features over the neighbor nodes using one or more
logical sentences. A feature is propagated over neighbor
nodes only if correct according to the graph logic rules.

For example in Figure 1, the variable describing if the
molecule is Alanine or Glycine is set based on the num-
ber of hydrogen atoms around the carbon atom and the
presence of three or two carbon atoms. We thus assume
that a collection of logical rules can be collected at the level
of the single atom and then verified by pooling the logical
variables at the level of the whole graph.

C C O−

OH

N+H3

CH3

Alanine

C C O−

OH

N+H3

H

Glycine

Figure 1: Alanine and Glycine Molecules; the difference is
in the presence of a specific sub-structure or the abundance
of specific atoms.

Our approach MAXSAT-GNN is a continuous-discrete ap-
proach and thus enjoys several benefits such as data effi-

1

Continuous-Discrete Message Passing for Graph Logic Reasoning

ciency and interpretability. For example in the arithmetics
experiments (subsection 4.2) the number of sentences is lim-
ited. Moreover, our experiments show (section 4) that our
approach exceeds the accuracy of standard message passing
approaches in several tasks.

2. Background
2.1. Notation

An undirected graph is a pair G = (VG, EG), where VG =
{v1, . . . , vN} is a finite set of vertices (also called nodes),
and EG ⊆ {{u, v} : u, v ∈ VG, u ̸= v} is a symmetric, ir-
reflexive, binary relation on VG. The elements in EG are
called edges. N (v) = {u : {v, u}, u ∈ V, {v, u} ∈ EG}
denotes the neighborhood of v and |·| denotes the size of a
set. For a column vector h, hT is its transpose.

2.2. SAT and MaxSAT Problems

The motivation for this work is satisfiability problems (SAT)
which consists of a set of boolean variables that are related
by a logical structure, in other words, elements related by
logic rules.

In general, the rules that govern the relationship between
those elements can be represented in conjunctive normal
form (CNF), which consists of a series of clauses joined by
AND operators. CNF can represent any propositional logic
(sec.7.5 of Russell (2010)) Each of the clauses may contain
some of the variables, or their negation, as follows:

(s11x1∨ . . .∨ s1nxn)∧ . . .∧ (sm1x1∨ . . .∨ smnxn), (1)

where sji determines whether the variable xi ∈ {⊥,⊤}1 is
present and/or negated in clause j , for example if s11 = 1
then x1 participates in the first clause, while if s11 = −1
then x1 is negated into ¬x1, while if s11 = 0 then x1 is not
present. The objective of the SAT problem is to find the
truth values of the variables so that the CNF statement is
fulfilled.

We consider the optimization analog of this problem
(MaxSAT), where the goal is to find a configuration of vari-
ables so that the amount of fulfilled clauses is maximized.
SATNet Wang et al. (2019) is a MaxSAT solver that can be
incorporated into more complex network architectures to
solve the MaxSAT problem while it learns the logical struc-
ture of the MaxSAT in a continuous and differentiable way.
SATNet shows great success in binary encoded prediction
problems such as the parity problem and sudoku puzzles.

1⊥ is the logic false value, and ⊤ is the logic true value. In the
following, the true value will be mapped to +1, while the false
value into −1.

2.3. SATNet

The SATNet Wang et al. (2019) is a satisfiability solver that
maps the variables and parameters of the MaxSAT problem
into a continuous high-dimensional space. This relaxation
allows us to write the MaxSAT problem as Semi-Definite
Programming (SDP) problem and solve the relaxation us-
ing fast block coordinate descent techniques. Using SDP
formulation to solve SAT problem has been shown to have
approximation guarantees for MAXCUT and MAX-2SAT,
while its use with low rank SDP solver for Max2SAT has
been proposed in (Wang et al., 2017; Wang and Kolter,
2019). The use of the SDP formulation allows the algorithm
to be integrated as a layer in machine learning systems.

Given a MAXSAT problem with n variables m clauses, we
denote the variables of the SAT as xi ∈ {−1, 1} for i ∈
{1, . . . n}, where xi represent the truth value of each of the
i-th variable. Let sji ∈ {−1, 0, 1} denote the parameters
of the SAT for i ∈ {1, . . . n} and j ∈ {1, . . . m} . The
value of sji represents thus the sign (if present) of variable
xi in clause j. The MaxSAT problem consists of finding the
values of xi so that the sum of fulfilled clauses is maximized
as follows:

max
x∈{−1,1}n

m∑
j=1

n∨
i=1

{
1 sjixi > 0

0 otherwise.
(2)

The MaxSAT problem is relaxed to form an SDP as done
by Goemans and Williamson (1995) and Wang and Kolter
(2019). First, the SAT variables xi are given a proba-
bilistic interpretation, allowing them to be in the interval
P (xi = 1) ∈ [0, 1]. Usually, inputs are binary encoded
and are discrete, but the MaxSAT solver based on SATNet
allows non-discrete inputs. Second, the probabilistic vari-
ables are relaxed by a map into the k-dimensional sphere:
P (xi = 1) ∈ [0, 1] → x̄i ∈ Sk−1 ⊂Rk, with ∥x̄i∥ = 1 and
Sk−1 = {x̄ ∈ Rk : ∥x̄∥ = 1}. The probabilistic variables
and the relaxed ones are related by an auxiliary variable x̄0

that is introduced as a truth-direction. The probability of
xi being true will be related to the projection of the relaxed
variable in the truth direction:

P (xi = 1) = cos−1(−x̄T
i x̄0)/π (3)

Additionally, the coefficients sji are also mapped into
the real numbers s̄ji ∈ R, and an additional coefficient
s̄j0 = −1 is introduced. The MaxSAT in equation 2 can be
expressed Wang and Kolter (2019) in the following Semi-
Definite Programming (SDP) form:

min
X̄

⟨STS, X̄T X̄⟩, such that ∥x̄i∥ = 1 ∀i (4)

where X̄ ∈ Rk×(n+1) and S ∈ Rm×(n+1) are the matrices
formed by the column vectors x̄i and si = s̄i/

√
4∥s̄i∥ re-

spectively. Given a set of known parameters S, the MaxSAT

2

Continuous-Discrete Message Passing for Graph Logic Reasoning

represented as in Equation 4 is solved via a block coordinate
descent method that converges to the optimal global point
of the SDP Wang et al. (2017). The solutions of the relaxed
MaxSAT x̄i ∈ Sk−1 are mapped back to a probabilistic
value using Equation 3.

To solve Equation 4, we first map the logic variable xi

to the relaxed variables x̄i. To improve convergence, the
vectors x̄i are generated from the logical values as x̄i =
− cos(πxi)x̄0 + sin(πxi)P⊤x̄

rand
i , where Pi = IK − x̄ix̄

T
i

is the projection matrix on the vector x̄i, while x̄rand
i is a

random unit vector. The solution of Equation 4 is given as
the fix point Wang et al. (2019)

x̄i = − gi
∥gi∥

(5)

where gi = X̄ST si − ∥si∥2x̄i = X̄ST si − vis
T
i si.

Given an assignment of the learnable parameters S, the
SATNet solver solves in a forward pass the MaxSAT prob-
lem. Wang et al. (2019) provides an efficient way to back-
propagate their gradients with respect to S. In other words,
this module can be combined with already known ma-
chine learning differentiable methods to learn the rules of
a MaxSAT encoded in the parameters of the S matrix. The
complexity of solving Equation 12 Wang et al. (2019), for
both forward and backward steps, is O(knmT), with T
being the maximum number of iterations. Additional in-
formation is provided in the Appendix D. In the following,
we will use y = MAXSATN

M (x) to denote a MAXSAT
problem with N logic variables and M clauses, where the
input variable x ∈ [0, 1]dx and output variables y ∈ [0, 1]dy

have a combined size of dx + dy = N . Whenever multi-
ple inputs x1, x2, . . . are presented to MAXSAT, these are
concatenated in a single input x.

2.4. Message Passing

Message passing Gilmer et al. (2017) consists of three steps.
First, for each pair of connected nodes u, v, a message
m(v, u) is computed. Second, for each node v, all mes-
sages m(v, u) with u ∈ N (v) are aggregated. Third, the
node representation of v is updated based on the aggregated
messages. In this work, we do not distinguish between
the node’s feature hv and the edge message m(v, u) during
aggregation.

3. MaxSAT-based Message Passing
We propose a message aggregation procedure where neigh-
boring nodes’ features, associated with a central node,
are logically related to the updated central node’s feature
through an unknown MaxSAT, see Figure 2, i.e. a set of
logic rules. Our motivation lies in the intuition that the in-
formation carried across graph edges and the updated nodes

Figure 2: MAXSAT Message passing: Visualization of the
Message Passing aggregation using a MaxSAT problem. We
use the Methane molecule from Figure 1, where the carbon
atom is the current node. The neighbor nodes are visualized
according to the adopted notation. The neighbor nodes N(v)
are first ordered (subsection 3.2) and then aggregated using
Equation 6.

can be represented as a set of truth variables. In noise free
application, we could encode all the rules of the graph in
a single SAT, however in reality, we have only access to
nosy data or simply samples from an underlay discrete dis-
tribution. For this reason, maximising the satisfied clauses
(i.e. MaxSAT) is a more reasonable approach. The logic
rules that fulfills the MaxSAT related to them can in princi-
ple be learned and computed from the neighbor nodes and
is inherent to the nature of information represented in the
graph.

MaxSAT-based message passing (or MAXSAT-GNN) as
we will introduce benefits from two features: first, it allows
to capture relationships that only involve local interaction
(i.e. node’s neighbours). Second, our model is capable of
carrying interactions between neighboring node features
through a memory. Those interactions can be captured at
the moment of aggregation.

In the proposed model, we use a differentiable rule learn-
ing approach to learn the MaxSAT behind the aggregation.
Node features and aggregated messages will therefore ac-
quire a probabilistic nature according to the relaxation pro-
cess discussed in the previous section.

3.1. Aggregation function over neighbors and message
passing using Recursive MaxSAT

We start by describing in more detail our aggregation
method on a single GNN layer. Given a central node i,
the input of our model is the set of all neighbors (N (i))
node features hl

j of that node plus the central node feature
itself, encoded as binary truth values: hl

i, h
l
j ∈ [0, 1]dl for

j ∈ N (i), where dl is the dimensionality of the features at
the l-layer, where the logic value is represented as a proba-

3

Continuous-Discrete Message Passing for Graph Logic Reasoning

Figure 3: MAXSAT variables: Visualization of the Mes-
sage Passing aggregation using a MaxSAT problem at the
l-layer of the network. mk

i ,m
k−1
i are the messages when

considering the i-node of the graph, while hl
j is the feature

of the j-neighbour node. The attention bit alji, described
in subsection 3.3, helps the MaxSAT to select the relevant
features.

bility (Equation 3).

The aggregation function over the neighbors of a node is
implemented recursively similar to Recurrent Networks
Hochreiter and Schmidhuber (1997), where the aggrega-
tion step uses a MaxSAT solver, for the experiments we use
SATNet (subsection 2.3). We call it R-MAXSAT-GNN, i.e.
Recursive MaxSAT Graph Neural Network. Using node i
and the set of its neighbor features hl

i, h
l
j : j ∈ N (i), the R-

MAXSAT-GNN applies a logic rule to all of those elements
in a recursive manner, in resemblance to an addition opera-
tion with multiple inputs. It starts operating on two of them
and the output is used as a carry or memory for the next
operation with the next element until the whole set takes
part in the aggregation. The memory is a key element of our
aggregation since it contains the important information from
all neighbor nodes to help to compute a logic-related output.
Let {hl

j : j ∈ N (i)} be the set of features entering the
node vi, where j is the neighbor node index. With reference
to Figure 3, we proposed aggregation of the following form:

mk
i = MAXSAT3dl

M (mk−1
i , hl

j) ∀j ∈ N (i) (6)

hl+1
i = m

|N (i)|
i , m0

i = hl
i (7)

where mk
i is the message/memory that aggregates the infor-

mation from the neighboring nodes for the ego-node, whose
feature, hl

i, can be used as the initial state. The center node
feature hl

i in Equation 7 can be removed, as for example
in the Node Missing data experiment (subsection 4.3), and
replaced with the first neighbor node’s feature.

3.2. Canonical ordering

In Equation 6, the nodes do not have a predefined order,
thus, to implement an equivariant or invariant Message Pass-
ing method for graph data Bronstein et al. (2021), i.e. to
the group of permutations over the nodes, we propose to

order the features before they are processed sequentially
Niepert et al. (2016). This ordering consists of mapping
the binary representation encoded in the features to the
real numbers and sorting the neighbors in decreasing order.
Whenever two or more nodes have the same feature’s val-
ues, the relative order is not relevant for the permutation
invariant property, since the result of the node’s features
aggregation of Equation 6 is independent of the permutation
of these nodes. While this ordering is fixed, it could be
easily extended using a self-attention mechanism, similar to
the attention bit (subsection 3.3).

3.3. Logic attention bit

When aggregating the features we consider also the use of
an attention bit. This bit is used to help the solver to decide
if the message should be processed or not. We call RA-
MAXSAT-GNN, the model that uses the attention bit. The
attention bit is computed between the center node and each
of its neighbors. The attention bit is an additional input to
Equation 6 as follows:

alji = σ(hlT
j W lhl

i − bl) (8)

mk
i = MAXSAT3dl+1

M (mk−1
i , alji, h

l
j) ∀j ∈ N (i) (9)

where σ is the non-linear Sigmoid function, W l ∈
Rdl×dl , bl ∈ Rdl are trained parameters and mk

i is the mem-
ory of the aggregation related to node i at step k, and dl
is the feature dimension ath l-layer. For the case that the
central node feature is missing, we consider a self-attention
bit alj = σ(hlT

j W lhl
j), and the attention would provide

self-filtering information for the SAT. As mentioned in the
previous section, the attention bit alji could also be used for
ordering the nodes. For simplicity, we use the fixed ordering
from subsection 3.2.

Figure 4: Visualization of the batch version of the MAXSAT,
where multiple nodes’ features are considered at once.

3.4. Batch aggregation

Recursive aggregation of Equation 6 suffers from various
limitations typical of recursive architectures Hochreiter and
Schmidhuber (1997), since the output is only observed af-
ter the last iteration or the probability uncertainties of the
variables grows at each iteration. In both cases, the Satnet
is forced to work with non-deterministic features multiple

4

Continuous-Discrete Message Passing for Graph Logic Reasoning

times which makes the problem highly non-convex and
potentially suffers from a vanishing gradient similar to Re-
current Networks. This makes a logic-based decision less
accurate.

To evaluate the capability of the recursive aggregation to
be trained end-to-end over multiple recursions steps, we
introduce an additional model Batch MAXSAT-GNN (B-
MAXSAT-GNN) that computes outputs over K neighbor-
ing nodes’ features at once in a single forward pass, where
K is fixed to the maximum node degree of the network.
Therefore, node features are ordered and concatenated.

hl+1
i = MAXSAT(n+2)dl

M (ϕ(hl
i, h

l
j1 , . . . , h

l
jn)), (10)

where ϕ refers to an ordering function, j ∈ N (I), and n =
|N (i)|. This model only requires one evaluation and does
not require hidden states, thus improving training stability.
However, when the degree of the node increases, the size
of the MaxSAT problem increases. For larger graphs, we
can thus resort to K-neighbors sampling to reduce the size
of the MaxSAT problem. When a node has less than K
neighbors, the missing node’s feature inputs are substituted
with a default value h̄0, which can either be set to all zeros
vector or learned during training. A visualization of the
B-MAXSAT-GNN with also attention bits is proposed in
Figure 4.

4. Experiments
In this section, we test experimentally the learning and pre-
diction capabilities of our MAXSAT-GNNs models. They
focus on the ability to aggregate features, assign a suitable
node label, and finally, find out if these node updates can be
used for graph classification.

4.1. Baselines

We evaluate the MAXSAT-GNNs against a variety of base-
lines that have the features we are interested in. To evaluate
the sequential processing, based on recursions with internal
states, we consider two recursive networks such as LSTM
Hochreiter and Schmidhuber (1997) and GRU Cho et al.
(2014). They use a hidden state that is passed to further
recursions and regulates the conservation and propagation
of information. For message passing on graph structures,
we consider the standard graph GCN convolution Kipf and
Welling (2016), the GAT convolution which contains an
attention mechanism to assign weights to edge messages
Veličković et al. (2017) and the Graph Isomorphism Net-
work (GIN) Xu et al. (2018), which improves GNN’s expres-
sive power. Tranformer based model have been adapter to
work with graph data, for example the Graph Transformer of
the Unified Message Passaging Model (UniMP) (Shi et al.,
2021).

4.2. Learn arithmetic: addition and multiplication

To support our motivation that logical reasoning can be
found in common machine learning problems, we com-
pare the learning capability of arithmetic operations of both
MAXSAT and existing approaches. Basic arithmetics over
interger numbers are implmented, even in modern computer
architectures, using logic rules, we test the ability of the
MAXSAT-GNNs in learning those rules. Therefore we take
into account two experiments: 1) Addition of 2, 3, and 4
numbers; 2) Multiplication with modulo of 2, 3, and 4 num-
bers. The synthetic datasets consist of numbers in binary
representation with a length of five bits (i.e. integer numbers
from 0 to 31). For the addition, we take all possible pairs,
triplets, and quadruplets whose sum does not exceed 31.
For multiplication, we consider all possible pairs, triplets,
and quadruplets. The labels are set to be the result of addi-
tion/multiplication with modulo 32 of those numbers. The
recurrent networks and the MAXSAT-GNNs are tested by
a simple forward pass on the set of numbers. To test those
sets on our graph-based benchmarks, we construct a star
graph dataset (from the previous sets) with an unlabeled
center node whose neighbors correspond to the numbers to
be operated. The output after a message aggregation should
give us an insight into their ability to learn the arithmetic
operation we are studying.

4.2.1. RESULTS OF LEARNING ARITHMETIC

The results of learning arithmetic are summarized in Table 1
for addition and for multiplication. We report the mean
accuracy per bit of the binary rounded results given by the
models. In general, we notice that our model learns much
better arithmetic operations than recurrent networks such
as GRU and LSTM. This is evidence of that the MAXSAT-
GNNs are more capable of encoding logic functions and
carrying them across a memory state. Also, if we take a
general view of the results of the graph-based convolutions
(GCN and GAT) we discover that MAXSAT-GNNs have
more power to aggregate messages on a logic-based setting,
which is not based only on a sum aggregation such as the
GCN’s and GAT’s. Taking a look at the specific results, in
addition, we find out that MAXSAT-GNNs give satisfactory
results in this task. When training on pairs of numbers the
R-MAXSAT-GNN achieves a perfect score together with
the GIN.

We notice also that adding elements to the recursion makes
the performance of the R-MAXSAT-GNN drop by 7.2%
and 18.0%. GIN maintains its almost perfect score when
training on quadruplets. The B-MAXSAT-GNN is still
capable to capture the addition operation maintaining its
performance over 98, 5% when it is trained on quadruplets.

We conclude from this that the R-MAXSAT-GNN is sensi-
ble to lose information as explained in subsection 3.4 when

5

Continuous-Discrete Message Passing for Graph Logic Reasoning

Method / task Addition Multiplication
Trained/ tested on 2 → 2 3 → 3 4 → 4 2 → 2 3 → 3 4 → 4

R-MAXSAT-GNN 1.0000(000) 0.9284(532) 0.8196(493) 0.9633(055) 0.9554(42) 0.9030(2)
B-MAXSAT-GNN - 0.9958(008) 0.9859(105) - 0.9586(3) 0.9758(018)

LSTM 0.8254(267) 0.4787(310) 0.7109(47) 0.8000(286) 0.8392(64) 0.8859(58)
GRU 0.8894(280) 0.7779(600) 0.7670(30) 0.8196(54) 0.8509(54) 0.8848(19)
GCN 0.5753(158) 0.6427(56) 0.6735(21) 0.6291(51) 0.7171(40) 0.7907(2)
GAT 0.7946(247) 0.7713(24) 0.7690(78) 0.7917(204) 0.8313(35) 0.8709(31)
GIN 1.0000(000) 0.9999(001) 0.9990(011) 0.8070(106) 0.8321(15) 0.8433(17)

Table 1: In this table we report the performance in terms of accuracy for the Addition of 5-bit numbers and Multiplication
with modulo of 5-bit numbers. The best and second-best results (if overlaps statistically) are reported, where the top results
are also underlined. The error, expressed as standard deviation, is reported in parenthesis and represents the last relevant
digits. For example 1.234± 0.050 is represented as 1.234(50). The dash represents that B-MAXSAT-GNN is equivalent to
R-MAXSAT-GNN.

Training on 2, 3, 4 number set (addition, out-domain evaluation)

Tested on 2 → 3 2 → 4 3 → 2 3 → 4 4 → 2 4 → 3

R-MAXSAT-GNN 1.0000(000) 0.9990(015) 0.8010(1783) 0.7875(1379) 0.6508(1529) 0.6438(1927)
B-MAXSAT-GNN - - 0.9938(059) - 0.9379(578) 0.9709(247)

LSTM 0.6027(1481) 0.5337(1268) 0.5870(526) 0.4787(310) 0.5886(40) 0.6393(73)
GRU 0.6903(233) 0.6034(261) 0.5957(1301) 0.5332(1624) 0.5577(519) 0.6304(167)
GCN 0.6387(61) 0.6727(36) 0.5918(258) 0.6736(16) 0.6013(340) 0.6384(39)
GAT 0.6075(91) 0.5440(150) 0.6421(189) 0.6654(76) 0.7038(147) 0.6688(79)
GIN 0.9199(44) 0.8228(82) 1.0000(000) 0.9679(039) 0.9987(022) 0.9999(002)

Table 2: In this table we show the accuracy results for the Addition of 5-bit numbers, where we test the generalization
(out-distribution), where the models are trained on 2, 3, 4 number-sets. The best and second-best results (if overlaps
statistically) are reported, where the top results are also underlined. The accuracy is reported as in Table 1. The dash
represents when B-MAXSAT-GNN can not be used since the number of operations is larger than K.

the input has more elements. This idea is supported when
looking at the uncertainty of the results. B-MAXSAT-GNN
has more stable results while the recursive version did only
sometimes achieve similar scores (and could not learn in
the others). For the multiplication task, R-MAXSAT-GNN
achieves the best accuracy score when training with pairs.
As before, B-MAXSAT-GNN has the peculiarity that their
results stay similar, over 95.8%, with the three datasets.

4.2.2. GENERALIZATION OF ARITHMETIC LEARNED
OPERATIONS

We explore if our models can generalize the arithmetic op-
eration on a different aggregation size, by testing them with
the other datasets that were not used for training. (For ex-
ample, the MAXSAT-GNN that was trained with pairs of
numbers tested on triplets and quadruplets). We report these
results on Table 2 and Table 3. For the addition, we observe
in general that the R-MAXSAT-GNN is able to generalize
when it was trained on pairs, but in the other experiments,
they are not, showing decreases in performance over 12%.
On the other hand, B-MAXSAT-GNN proves to be more
successful in this task, maintaining their ability to learn
pair multiplication at 99.4% and 93.7% in the triplet and
quadruplet experiments respectively. Unfortunately, this

achievement is obscured by the fact the GIN is able to gen-
eralize in all cases with scores over 99%.

We report a similar generalization behavior on the multipli-
cation task with MAXSAT-GNN. In contrast to its recursive
version, the accuracy of B-MAXSAT-GNN does not de-
crease more than 3% for the pairs and triplet experiments
and it decreases slightly more, by 5.4%, when it is trained
on four numbers and tested on two.

4.3. Node Missing Data

As a second step, knowing that the R-MAXSAT-GNN is
capable to learn an arithmetic operation on binary numbers,
we move on to real datasets whose features are represented
in binary or one-hot encoding. We follow the assumption,
that there is some logical operation, similar to an arithmetic
operation, that can be performed on messages toward a spe-
cific node. This operation would help to discern newer or
missing node representations on a graph, for instance, to
find node labels when data is not available, from the neigh-
borhood information. Missing node data prediction consists
in predicting node features based on the information that
can be gathered from their neighborhood. It is a useful task
when the dataset is incomplete, but there is still information

6

Continuous-Discrete Message Passing for Graph Logic Reasoning

Training on 2, 3, 4 number sets (multiplication, out-distribution)

Tested on 2 → 3 2 → 4 3 → 2 3 → 4 4 → 2 4 → 3

R-MAXSAT-GNN 0.9445(048) 0.9409(066) 0.7221(1060) 0.9013(543) 0.7884(39) 0.8544(1)
B-MAXSAT-GNN - - 0.9306(016) - 0.9218(036) 0,9541(014)

LSTM 0.7654(334) 0.7462(367) 0.6514(134) 0.8001(171) 0.6556(313) 0.7676(443)
GRU 0.7539(288) 0.7707(489) 0.7672(178) 0.8699(167) 0.7063(568) 0.8037(230)
GCN 0.7160(16) 0.7909(4) 0.6116(127) 0.7903(7) 0.6128(73) 0.7121(28)
GAT 0.7426(174) 0.7226(440) 0.7122(78) 0.8499(33) 0.6963(183) 0.7891(45)
GIN 0.5290(59) 0.4970(68) 0.5945(256) 0.6138(45) 0.6278(43) 0.7165(25)

Table 3: In this table we show the accuracy results for the Multiplication with modulo of 5 bit numbers, where we test the
generalization (out-distribution), and where the models are trained on 2, 3, 4 number-sets. The best and second best results
(if overlaps statistically) are reported, where the top results are also underlined. The accuracy is reported as in Table 1.

Node Missing Data

MUTAG Mutagenicity ENZYMES

R-MAXSAT-GNN 0.9372(031) 0.8968(009) 0.7123(178)
*B-MAXSAT-GNN 0.9201(22) 0.8221(18) 0.7266(045)
RA-MAXSAT-GNN 0.9365(002) 0.8962(010) 0.7269(046)

GCN 0.9165(17) 0.7637(92) 0.7164(36)
GAT 0.9086(40) 0.8182(1) 0.7202(43)
GIN 0.9134(109) 0.8263(8) 0.7152(41)

Table 4: The accuracy performance in recovering the miss-
ing node features on the molecular datasets. The best and
second best results (if overlaps statistically) are reported,
where the top results are also underlined. The accuracy is
reported as in Table 1.

enough to capture the missing data.

We set up our experiment on three datasets from the bench-
marks for graph learning TUDataset Morris et al. (2020a)
MUTAG, Mutagenicity, and ENZYMES. For training, we
set 20% of all the nodes to be test nodes: their features are
set to zero, meaning that they are unknown. The rest of the
nodes are the training nodes. During each training iteration
(mini-batch), 10% of the training nodes are set to zero, and
their features are inferred at training time. We use a similar
architecture as in the previous experiment, composed of
one layer of message aggregation with our three models
and the baselines to gather neighborhood information; and
one linear layer for non-probabilistic outputs. The labels
of the nodes are one-hot encoded features. Therefore we
optimize the cross entropy loss for multiclass classification
and evaluate performance using classification accuracy after
applying a soft-max layer to the output.

4.3.1. RESULTS OF NODE MISSING FEATURE TASK

As shown in Table 4, the ability of the MAXSAT-GNN to
find the correct label based on closest neighbor message
passing is similar to or slightly better that the other models.

On the MUTAG dataset, the Satnet achieves an accuracy

of 93.7% which is somewhat better than the results of the
baselines which reach 91.3%. This difference is more re-
markable in the case of the Mutagenicity dataset where the
difference is over 7% with respect to the best of the GNN
networks. The results achieved on the ENZYMES dataset
do not exhibit a particular improvement over the baselines.

4.4. Graph Classification

We further investigate the performance of the proposed
method for the task of graph classification. We consider
three datasets from the same graph learning benchmarks
Morris et al. (2020a): MUTAG, Mutagenicity, and PRO-
TEINS. We additionally tested on the ZINC dataset (Ster-
ling and Irwin, 2015; Gómez-Bombarelli et al., 2018). The
first two contain graphs with one-hot encoded features. The
PROTEINS dataset consists of an integer number plus a one-
hot encoded three-class features. That integer number was
”clamped” between the values 0 and 31, the interval where
most of the values lie, and subsequently was converted into
a binary 5-bit vector and was eventually concatenated to the
rest of the features.

All those datasets have a global graph label with two differ-
ent classes. For training and metric evaluation, we split them
into a training set (80%) and a test set (20%) respectively.

The architecture for our MaxSAT-based message passing
consisted of 2 layers of message aggregation with RA-
MAXSAT-GNN, and B-MAXSAT-GNN. A global pooling
using the max function, which should resemble an OR gate.
One linear dense layer followed by a Sigmoid function, for
probabilistic outputs. The baselines (GCN, GAT, and GIN)
use the same architecture. We train our models using Adam
Kingma and Ba (2014) optimizer and the binary cross en-
tropy loss Zhang and Sabuncu (2018). For the Zinc dataset
we additional compared with the Graph Transformer. We
also evaluate our results using the accuracy metric.

7

Continuous-Discrete Message Passing for Graph Logic Reasoning

4.4.1. RESULTS OF GRAPH CLASSIFICATION TASK

In complex tasks such as graph classification where multiple
aggregations are involved, the MaxSAT-based models are
capable of performing similarly to the baselines. The results
are shown in Table 5. We report the performance of B-
MAXSAT-GNN, although they are not an adequate model
for performing aggregation, especially for datasets such as
PROTEINS, where the maximum graph degree is consid-
erably larger than the other datasets. While for the ZINC
dataset, our MaxSAT model shows lower performance, we
see that our models outperform on average the other base-
lines on the MUTAG dataset reaching 92.1% in accuracy,
while in the others the results overlap. This demonstrates
that graph classification can be modeled with SAT solvers
where an internal logical representation of the nodes is ca-
pable of classifying the graphs.

Graph Classification

MUTAG Mutagenicity PROTEINS ZINC

B-MAXSAT-GNN 0.9211(456) 0.7949(123) - -
RA-MAXSAT-GNN 0.9035(152) 0.8078(130) 0.7227(262) 0.8690 (0.0206)

GCN 0.7632(912) 0.7919(131) 0.7047(324) 0.9025 (0.0035)
GAT 0.7979(405) 0.7905(87) 0.6811(419) 0.9028 (0.0055)
GIN 0.8502(402) 0.8150(149) 0.6922(475) 0.9114 (0.0036)

Graph Transformer - - - - 0.9012 (0.0023)

Table 5: Standard deviation is reported with the last n posi-
tion. The best and second-best results (if it overlaps statisti-
cally) are reported, where the top results are also underlined.
The accuracy is reported as in Table 1.

5. Related Work
Deep learning on graphs and in particular graph neural net-
works (GNNs) has been extensively studied in the last few
years Sperduti and Starita (1997); Scarselli et al. (2008);
Kipf and Welling (2016); Gilmer et al. (2017). The pre-
dominant paradigm is message passing Gilmer et al. (2017),
which propagates information using a learnable non-linear
function on the graph. Among the most popular architec-
ture is GCN Kipf and Welling (2016), where the graph
is represented using the normalized adjacent matrix, GAT
Veličković et al. (2017), where the weights of multiple
heads on the node are mixed with learnable functions, and
Graph Isomorphism Network (GIN) Xu et al. (2018), which
achieves the same discriminative power level of Weisfeiler-
Lehman (WL) isomorphism test. RNNLogic Qu et al.
(2021) uses an EM-based algorithm to learn a set of rules for
reasoning on knowledge graphs. Contrary to our approach,
the model is not differentiable. In Niepert et al. (2016) the
authors consider a fixed canonical ordering, while we use
a fixed function, which depends on the current node’s fea-
ture. To overcome the limited expressive power of GNN,
recently alternative approaches have been proposed as in
Maron et al. (2019; 2018); Morris et al. (2020b); Morris and

Mutzel (2019), where WL-k (k ≥ 1) networks are described,
whose complexity, however, increases exponentially with
the expressive level k.

Learning Aggregation Function and Learning on Sets
An alternative line of work addresses the improvement in
the aggregation function in current graph neural netwok and
message passing architectures. (Corso et al., 2020),(Pelle-
grini et al., 2021). Another alternative direction is discard
the graph straucture and directly learn over sets (Lee et al.,
2019). These works do not attempt to model the learning
process using logic clauses.

Reasoning in Knoledge Graphs Reasoning over categor-
ical data is a critical task in Knowledge Graphs (Zhang et al.,
2020),(Qiu et al., 2023). In this application the information
in organized in triplet and infgerence of new relationships
or links an important task.

Discrete latent variables An alternative way to model
reasoning is to use discrete latent variables. To integrate dis-
crete variables into traditional differentiable architectures,
various gradient estimations have been proposed Jang et al.
(2016); Maddison et al. (2016); Paulus et al. (2021). Un-
fortunately, these models only mimic the discrete nature of
the variables but do not capture the underlying reasoning
mechanism.

Neural Combinatorial Optimization (NCO) The combi-
natorial problem can be solved using heuristics, NCO meth-
ods use deep neural networks to learn adaptable heuristics
either using supervised learning or reinforcement learning
Joshi et al. (2019); Kool et al. (2019). These approaches
could be alternatives to the one proposed in this work.

6. Conclusions
In this paper, we propose to model the properties of graph
structure data using logic rules which can be learned through
end-to-end training. We exploit the structure of message
passing and proposed an invariant-equivariant architecture
based on an ordering function and a flexible attention mech-
anism. We prove with multiple experiments that MAXSAT-
GNN learns rules for arithmetic operations, while on molec-
ular datasets is capable of estimating missing node features
and classifying graphs. Limitations of this work are: we
expect input features to be discrete and data generated at
least partially according to some logic rules. Further, the
training is longer because of its recursive nature.

8

Continuous-Discrete Message Passing for Graph Logic Reasoning

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural
networks and its practical implications. arXiv preprint
arXiv:2006.05205, 2020.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar
Veličković. Geometric Deep Learning: Grids, Groups,
Graphs, Geodesics, and Gauges, May 2021. URL http:
//arxiv.org/abs/2104.13478.

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi,
Christopher Morris, and Petar Veličković. Combinatorial
optimization and reasoning with graph neural networks.
arXiv preprint arXiv:2102.09544, 2021.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological
view. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3438–3445, 2020.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro
Liò, and Petar Veličković. Principal neighbourhood ag-
gregation for graph nets, 2020.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio
Micheli. A fair comparison of graph neural networks for
graph classification. arXiv preprint arXiv:1912.09893,
2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural Message Passing for
Quantum Chemistry, June 2017. URL http://arxiv.
org/abs/1704.01212.

Michel X. Goemans and David P. Williamson. Improved
approximation algorithms for maximum cut and satis-
fiability problems using semidefinite programming. J.
ACM, 42(6):1115–1145, nov 1995. ISSN 0004-5411. doi:
10.1145/227683.227684. URL https://doi.org/
10.1145/227683.227684.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duve-
naud, José Miguel Hernández-Lobato, Benjamı́n Sánchez-
Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central
Science, 4(2):268–276, Feb 2018. ISSN 2374-7943. doi:
10.1021/acscentsci.7b00572.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780,
11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.
8.1735. URL https://doi.org/10.1162/neco.
1997.9.8.1735.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. arXiv:1611.01144,
2016.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson.
An efficient graph convolutional network technique for
the travelling salesman problem. arXiv:1906.01227,
2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks, 2016. URL
https://arxiv.org/abs/1609.02907.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention,
learn to solve routing problems! ICLR, 2019.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek,
Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant
neural networks, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. arXiv:1611.00712, 2016.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron
Lipman. Invariant and equivariant graph networks. In
International Conference on Learning Representations,
2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and
Yaron Lipman. Provably powerful graph networks. Ad-
vances in neural information processing systems, 32,
2019.

Christopher Morris and Petra Mutzel. Towards a practical
k-dimensional weisfeiler-leman algorithm. arXiv preprint
arXiv:1904.01543, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and leman go neural: Higher-order
graph neural networks. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 33, pages 4602–
4609, 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kris-
tian Kersting, Petra Mutzel, and Marion Neumann. Tu-
dataset: A collection of benchmark datasets for learning
with graphs. arXiv preprint arXiv:2007.08663, 2020a.

9

http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1609.02907

Continuous-Discrete Message Passing for Graph Logic Reasoning

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weis-
feiler and leman go sparse: Towards scalable higher-order
graph embeddings. Advances in Neural Information Pro-
cessing Systems, 33:21824–21840, 2020b.

Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning,
pages 2014–2023. PMLR, 2016.

Hoang Nt and Takanori Maehara. Revisiting graph neural
networks: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

Gábor Pataki. On the rank of extreme matrices in semidef-
inite programs and the multiplicity of optimal eigenval-
ues. Mathematics of operations research, 23(2):339–358,
1998.

Max B Paulus, Chris J Maddison, and Andreas Krause.
Rao-blackwellizing the straight-through gumbel-softmax
gradient estimator. page 11, 2021.

Giovanni Pellegrini, Alessandro Tibo, Paolo Frasconi, An-
drea Passerini, and Manfred Jaeger. Learning aggregation
functions, 2021.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil,
Georg Martius, and Michal Rolinek. Differentiation of
blackbox combinatorial solvers. In International Confer-
ence on Learning Representations, 2019.

Haiquan Qiu, Yongqi Zhang, Yong Li, and Quanming
Yao. Logical expressiveness of graph neural network
for knowledge graph reasoning, 2023.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua
Bengio, and Jian Tang. RNNLogic: Learning Logic Rules
for Reasoning on Knowledge Graphs. In International
Conference on Learning Representations, 2021.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Ben-
jamin Paul Chamberlain, Xiaowen Dong, and Michael
Bronstein. On the unreasonable effectiveness of feature
propagation in learning on graphs with missing node fea-
tures. arXiv preprint arXiv:2111.12128, 2021.

Stuart J Russell. Artificial intelligence a modern approach.
Pearson Education, Inc., 2010.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE transactions on neural networks,
20(1):61–80, 2008.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong,
Wenjin Wang, and Yu Sun. Masked label prediction:
Unified message passing model for semi-supervised clas-
sification, 2021.

Alessandro Sperduti and Antonina Starita. Supervised neu-
ral networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3):714–735, 1997.

Teague Sterling and John J. Irwin. Zinc 15 – ligand discov-
ery for everyone. Journal of Chemical Information and
Modeling, 55(11):2324–2337, Nov 2015. ISSN 1549-
9596. doi: 10.1021/acs.jcim.5b00559.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Cham-
berlain, Xiaowen Dong, and Michael M Bronstein. Un-
derstanding over-squashing and bottlenecks on graphs via
curvature. arXiv preprint arXiv:2111.14522, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks, 2017. URL https://arxiv.
org/abs/1710.10903.

Po-Wei Wang and J Zico Kolter. Low-rank semidefinite pro-
gramming for the max2sat problem. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pages 1641–1649, 2019.

Po-Wei Wang, Wei-Cheng Chang, and J. Zico Kolter. The
mixing method: low-rank coordinate descent for semidef-
inite programming with diagonal constraints, 2017. URL
https://arxiv.org/abs/1706.00476.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter.
Satnet: Bridging deep learning and logical reasoning
using a differentiable satisfiability solver. In Interna-
tional Conference on Machine Learning, pages 6545–
6554. PMLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks?, 2018. URL
https://arxiv.org/abs/1810.00826.

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy,
Bo Li, Yuan Qi, and Le Song. Efficient probabilistic logic
reasoning with graph neural networks. arXiv preprint
arXiv:2001.11850, 2020.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy
loss for training deep neural networks with noisy labels.
Advances in neural information processing systems, 31,
2018.

10

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1706.00476
https://arxiv.org/abs/1810.00826

Continuous-Discrete Message Passing for Graph Logic Reasoning

Supplementary Materials

A. Limitations of the proposed approach
We recognize some limitations of the proposed approach.
First, the dataset’s input features are considered discrete
and the dataset is generated at least partially according to
some logic rules. If the input data is described with continu-
ous variables and quantization of the input values does not
introduce high distortion, then the model can be used. In
some situations, we can employ an initial nonlinear layer to
encode the features either into discrete features (for example
using Jang et al. (2016); Maddison et al. (2016); Paulus et al.
(2021)) or into continuous value in [0, 1]. Otherwise, other
approaches are more appropriate. Training of the model
is longer because of the recursive nature of the model and
proportional to the number of neighbors of the nodes, but
the number of variables is similar to alternative methods.
With the batch architecture, the computational time and con-
vergence are comparable with the classical forward neural
network.

B. Logic expressive power
We model the relationship of nodes’ (or edges’) features
in the neighborhood of a node of a graph. When we use
multiple layers, we can extend the scope of the learned rules
to a larger number of features. While we model extended
logic rules over the features of a graph, we do know if we
cover all possible logic rules. This is left for future work.

C. Experimental details
C.1. Addition

For the addition experiments, we set the number of bits to
5, thus the total number of variables is n = 15, where two
numbers are used as input and one variable is the output.
We set the number of auxiliary variables Wang et al. (2019)
to aux = 12, while the number of clauses m = 40. The
number of applications of the MAXSAT depends on the
experiment N = 1, 2, 3. The same network is applied re-
cursively. With the B-MAXSAT-GNN, the missing input
variables are set to zero.

C.2. Multiplication

For the multiplication experiments, we set the number of
bits to 5, thus the total number of variables is n = 15,
where two numbers are used as input and one variable is the
output. We set the number of auxiliary variables Wang et al.
(2019) to aux = 16, while the number of clauses m = 88.
The number of applications of the MAXSAT depends on
the experiment N = 1, 2, 3. The same network is applied
recursively. With the B-MAXSAT-GNN, the missing input

variables are set to zero, while aux = 100,m = 100, and
n = 5 + 5N .

C.3. Graph Classification

For the Graph Classification experiments the total number
of variables is n, the number of auxiliary variables Wang
et al. (2019) aux, and the number of clauses m, the number
of applications of the MAXSAT depends on the dataset,
for Mutagenicity N = 5, aux = 20,m = 20, n = 42, for
PROTEINS N = 26, aux = 12,m = [12, 20], n = 24 and
for MUTAG N = 28, aux = 12,m = [24, 24], n = 27.
The same network is applied recursively as an aggregation
function, while we use 2 layers in the experiments. With
the B-MAXSAT-GNN, the missing input variables are set
to zero. GCN has a similar architecture with two layers
and 64 channels, while GAT has 16 channels, and GIN
has 7 channels. An additional network generates the graph
classification from the node features. For training, we use
ADAM Kingma and Ba (2014) gradient update and lr =
1e−3, while the training loss function is the binary cross
entropy loss Zhang and Sabuncu (2018).

C.4. Node missing features

As for the Graph Classification experiments, also for the
Node missing features experiments the total number of vari-
ables is n, the number of auxiliary variables Wang et al.
(2019) aux, the number of clauses m, the number of applica-
tion of the MAXSAT depends on the dataset, for Mutagenic-
ity N = 5, aux = 20,m = 20, n = 42, for PROTEINS
N = 26, aux = 12,m = [12, 20], n = 24 and for MUTAG
N = 28, aux = 12,m = [24, 24], n = 27. The same net-
work is applied recursively as an aggregation function, while
we use 2 layers in the experiments. With the B-MAXSAT-
GNN, the missing input variables are set to zero. GCN
has a similar architecture with two layers and 64 channels,
while GAT has 16 channels, and GIN has 7 channels. For
training, we use ADAM Kingma and Ba (2014) gradient
update and lr = 1e−3, while the training loss function is
the binary cross entropy loss. The difference with respect
to the graph classification is that we do not have a graph
pooling function, but we predict the node features for the
missing node features directly.

D. Differentiable Satisfiability Network
D.1. MAX-SAT Problem

In Maximal Satisfiability Problems (MAX-SAT), we are
interested to find the assignment of n binary variables xi ∈
{−1, 1}, i = 1, . . . , n concerning m given clauses, or

max
x∈{−1,1}n

∑
j∈[m]

∨i∈[n]1sjixi>0 (11)

11

Continuous-Discrete Message Passing for Graph Logic Reasoning

where sji ∈ {−1, 0,+1} are the clauses of the MAX-SAT
problem. If sji = 0 the variable i is ignored in the j clause,
while xi = +1 is associated with a true value and xi = −1
to a false value, thus sji = −1 negates the variable xi.
MAX-SAT is one of the extensions of the Satisfiability
(SAT) problem, where all the clauses need to be true. Re-
laxing the SAT is useful when we want to find the closest
solution that satisfies most of the clauses.

D.2. SAT-Net: differentiable MAX-SAT relaxation via
Semi-definitive programming (SDP)

The problem in Equation 11 can be relaxed into a Semi-
Definitive Programming (SDP) problem ?Wang and Kolter
(2019); Wang et al. (2017)

min
V ∈Rk×(n+1)

⟨STS, V TV ⟩ s.t. ∥vi∥ = 1,∀i ∈ {⊤, 1, . . . , n},

(12)

where for each input variable xi is associated with unitary
vector vi ∈ RK of dimension k, with some k >

√
2n Pataki

(1998), with k is the size of the embedded space, while n
is the number of variables. The variable v⊤ is used as a
reference and is associated with true logic value. The nor-
malized matrix S = [s⊤, s1, . . . , sn]/ diag(1/

√
4|sj |) ∈

Rm×(n+1) encodes the clauses, while the unitary matrix
V ∈ RK×(k+1) encodes the variables.

Reading the logic variables Once we solve the relaxed
problem, we need to compute the logic variables from the
vectors that minimize Equation 12.

P (xi = 1) =
1

π
arccos (−vTi v⊤)

The probability measures the angle between the vector asso-
ciated with the true value and the vector associated with the
i variable, indeed vTi v⊤ = cos(πxi). If we want to recover
the discrete value, we compute the sign of the probability,
i.e. xi = sign(P (xi = 1)).

Transforming the logic variables to the relaxed vectors
We generate the vectors from the logical values as vi =
− cos(πxi)v⊤ + sin(πxi)P⊤v

rand
i , where Pi = IK − viv

T
i

is the projection matrix on the vector vi, while vrand
i is a

random unit vector.

Solving the SDP relaxation The solution of Equation 12
is given as the fix point Wang et al. (2019)

vi = − gi
∥gi∥

(13)

where gi = V ST si − ∥si∥2vi = V ST si − vis
T
i si.

Algorithm 1 Forward pass algorithm: coodrinate descent

Input: VI , where I is the set of input variables
Output: VO, where O is the set of output variables

1: G = V ST

2: while not converged do
3: for i ∈ O do
4: gi = V ST si − ∥si∥2vi
5: vi = − gi

∥gi∥ As described in section subsec-
tion D.2

6: G = G+ (vi − vprev
i)sTi

7: end for
8: end while

Auxiliary variables As noted in Wang et al. (2019), ad-
ditional variables (aux) are necessary to help the SDP re-
laxation to converge to the minimal point. These variables
do not have a specific meaning, but we notice that they are
akin to reformation using additional variables of the original
problem, this reformulation, while not changing the original
truth table, helps the underlying minimization procedure to
converge.

Computational complexity of solving SDP relaxation
The complexity of the algorithm depends on the solution of
Equation 12. As shown in (Wang et al., 2019) the solution
of the SDP relaxation can be computed using coordinate
descent and the integration as differentiable is implemented
using two separated, but similar algorithms Alg.1 and Alg.2
for the forward and backward passes.

Since the algorithms require only rank-one updates, the
overall complexity of the two algorithms is O(Tkmn), with
k the expanded dimension, n the number of variables and
m the number of clauses. At the same time, T represents
the number of iterations of the algorithm. During the exper-
iments, T is set to a small number, e.g. T = 40.

Computational complexity of solving SDP relaxation on
graphs When solving MAXSAT-GNN, we need to solve
a MAXSAT problem for each node and for all the neigh-
bours. The computational complexity of in this scenario is
O(TkmnNML), where N is the number of nodes, M is
the number of edges, and L number of layers. The batch
version of MAXSAT-GNN has the same time complexity,
but it is more stable during training since the MAXSAT
modules are not connected in series but in parallel.

E. Motivational Example: 1-WL Isomorphism
Test

In Figure 5, we show two graphs that can not be distin-
guished according to the 1-WL isomorphism test and, con-
sequently, by a standard GNN. Indeed the neighborhood of

12

Continuous-Discrete Message Passing for Graph Logic Reasoning

Algorithm 2 Backward pass algorithm: coodrinate descent

Input: ∇OL, where O is the set of output variables
Output: ∇IL, where I is the set of input variables

1: UO = 0, F = UOS
T
O = 0

2: while not converged do
3: for i ∈ O do
4: ∇gi = Fsi − ∥si∥2ui − ∂L/∂vi
5: ui = −Pi∇gi/∥gi∥
6: F = F + (ui − uprev

i)sTi
7: end for
8: end while

(a)

(b)

Figure 5: Graph (a) and graph (b) are not distinguishable
for a standard GNN or 1-WL test.

the red and green nodes in both graphs is the same, so the
aggregation function will return the same result. If we are
able to propagate the multi-hop distance in binary format,
then we can reason on the relative distance of nodes. In a
simplified example, consider the adjacent matrix A of the
two networks, we then thus use the one-hop and two-hop
adjacent matrices Aa, A

2
a of the first graph (Equation 14)

and Ab, A
2
b of the second graph (Equation 15). We can use

the rows of the two-hop adjacent matrix to reason on the
node contribution. For example, the node 1 (as highlighted
in Equation 14) has one entry equal to 2 and three equal to
1, while in the second graph (as highlighted in Equation 15),
two entries equal to 2 and one equal to 1. We can thus
use this information to classify the node or the graph. A
standard GNN would not be able to count the entries.

Aa =

0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 1 1 0
0 1 1 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

, A2
a =

2 0 1 1 1 0
0 2 1 1 0 1
1 1 3 0 1 1
1 1 0 3 1 1
1 0 1 1 2 0
0 1 1 1 0 2

(14)

Ab =

0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0

, A2
b =

2 0 0 2 1 0
0 2 2 0 0 1
0 2 3 0 0 2
2 0 0 3 2 0
1 0 0 2 2 0
0 1 2 0 0 2

(15)

F. Zinc Experiments
We propose also experiments with the Zinc dataset, where
we model the regression tasks as a classification into 5
classes representing different intervals defined by the in-
tervals of probabilities [0.7, 0.3, 0.1, .01] and train on the
first 12′000 samples. We additional compared with a graph
transformer model (Shi et al., 2021). For this dataset, the
GIN network provides higher accuracy.

Graph Classification

ZINC

B-MAXSAT-GNN 0.8690(0206)

Graph Transformer 0.9012(0023)
GCN 0.9025(0035)
GAT 0.9028(0055)
GIN 0.9114(0036)

Table 6: Standard deviation is reported with the last n posi-
tion. The best and second-best results (if it overlaps statisti-
cally) are reported, where the top results are also underlined.
The accuracy is reported as in Table 1.

13

