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Abstract—Mission-critical operations, particularly in the con-
text of Search-and-Rescue (SAR) and emergency response situa-
tions, demand optimal performance and efficiency from every
component involved to maximize the success probability of
such operations. In these settings, cellular-enabled collaborative
robotic systems have emerged as invaluable assets, assisting first
responders in several tasks, ranging from victim localization
to hazardous area exploration. However, a critical limitation in
the deployment of cellular-enabled collaborative robots in SAR
missions is their energy budget, primarily supplied by batteries,
which directly impacts their task execution and mobility. This
paper tackles this problem, and proposes a search-and-rescue
framework for cellular-enabled collaborative robots use cases
that, taking as input the area size to be explored, the robots fleet
size, their energy profile, exploration rate required and target
response time; finds the minimum number of robots able to
meet the SAR mission goals and the path they should follow
to explore the area. Our results show that i) first responders
can rely on a SAR cellular-enabled robotics framework when
planning mission-critical operations to take informed decisions
with limited resources and ii) illustrate the number of robots
versus explored area and response time trade-off depending on
the type of robot: wheeled vs quadruped.

Index Terms—5G, Cellular, Collaborative Robots, Energy Sav-
ing, Search-and-rescue.

I. INTRODUCTION

In mission-critical Search-and-Rescue (SAR) operations, the
fast response times to disasters and emergencies is paramount
for saving lives. First responders teams tend to risk their
lives in these situations. Such risks can be mitigated by
using mobile robots for victim localization and exploration
of hazardous areas [1]. Effective coordination of a multi-
robot fleet is essential to meet the rapid response requirements
of SAR operations, optimizing zone exploration and task
allocation while avoiding redundancy [2]. This coordination
can be achieved through a centralized task planner in an edge
server [3] that collects feedback from the robots, maps the
explored area and generates optimal path plans for each robot.

However, mobile robots face a significant challenge in the
form of energy constraints since they normally rely solely
on batteries. Increasing battery capacity would lead to added
weight, resulting in higher mobility energy consumption and
thus, a design trade-off [4]. Extensive research has explored
energy-aware strategies to enhance overall efficiency [5] [6]
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[7]. Some authors propose selectively activating or deacti-
vating hardware components like sensors and communication
peripherals based on task requirements [8]. These features, in-
cluding battery charging decisions, can also be integrated into
the decision-making algorithms of edge/cloud task planners.

The efficiency of SAR operations hinges on both their
execution and prior planning. Effective strategic planning
involves allocating and distributing equipment resources across
the deployment area to significantly reduce mission response
times. Factors such as the battery capacity of the robot fleet,
required number of robots, and the characteristics of the area
are key to develop a plan that anticipates the mission demands.

Previous work [9] proposed to integrate the orchestration
logic from the mobile network infrastructure and the robot
domains in an online manner, thus enabling information ex-
change between the robots and a centralized control-level task
planner in real-time. Despite achieving promising results in
mission efficiency, the outcomes of such approaches heavily
depend on the initial assumptions and conditions considered.

Given the importance of such mission planning decisions,
in this work, we propose a novel robotic SAR framework that
enhances state-of-the-art orchestration strategies for mobile
collaborative robots by introducing a SAR mission planning
phase. Specifically, we introduce a mission planning building
block that takes into account readily available information
to first responders such as the area to be explored and the
number of robots available and, considering mission goals
such as exploration rate and response time ,provides informed
decisions on the number of robots required for a mission.

II. RELATED WORK

The adaptability and robustness of robot devices make them
a valuable asset in hazardous environments, and it is no
surprise that several works in the literature already investigated
the adoption of mobile robots for SAR operations [10]. In
unstructured environments such as post-disaster areas, key
metrics like response time and area coverage depend on
multiple external factors, including the exploration strategy,
the collaborative multi-robot system implementation, as well
as robotic energetic and hardware resources [11]. Several
works in the literature tackle these issues, but mostly in an
independent manner.



Fig. 1: Cellular-enabled Collaborative Robotics Search-and-Rescue Framework

In [12], the authors propose to save energy consumption
by enabling/disabling certain robot hardware components,
increasing the exploration efficiency and robot autonomy when
revisiting already known areas. In the energy savings works,
computation off-loading denotes an improvement as well [13].
The overall efficiency of SAR operations can be enhanced
by efficient robot coordination. In [3], the authors propose a
centralized orchestration scheme for robot fleet path planning,
leveraging edge computing and Wi-Fi technology for com-
munication. Conversely, the authors in [14], propose a joint
5G and robot orchestration logic that indicates optimal path
planning of a robot fleet, as well as, robot hardware usage
(i.e. sensors, communication peripherals) and battery charging
priorities using a charge station.

The overall proposed architecture revolves around the possi-
bility of using a dedicated 5G network by including a gNodeB
5G-NR base station in the SAR equipment deployment, which
guarantees fast communications between the orchestrator and
the robots. The results in this paper and in [9] denote that
optimal performance in SAR operations is improved upon
increasing the robot fleet size, while also negatively affected
by the exploration area obstacle density.

However, SAR performance can also be enhanced by fo-
cusing on the planning before mission execution. In [15], the
authors study the impact of robot fleet sizes on area exploration
performance. Results derived from a 3D frontier-based multi-
robot collaborative framework denote a positive increase in
exploration efficiency and fleet size, up to a certain limit. This
justifies the existence of an optimal resource allocation point
that depends on the specific target deployment area. Authors
in [16] also observed that the achieved area exploration and
multi-robot performance depend on the initial position of
robotic teams and need to be carefully considered during the
initial planning phase.

None of the above works though have considered neither the
energy aspects in their resource planning evaluation, nor the
impact energy savings might have in the resource allocation
previous to execution.

III. CELLULAR-ENABLED COLLABORATIVE ROBOTICS
SEARCH-AND-RESCUE FRAMEWORK

We consider scenarios where first responder teams leverage
on a fleet of robots for SAR mission-critical operation in
unknown areas. We assume the size of the exploration area
is known (as it may be easily estimated), and that robots col-
laborate by making use of their cellular connectivity (4G/5G).

In order to optimize the first responders operation we design
the SAR framework depicted in Fig. 1. It is composed of
two main phases: the Mission Planning phase and the Mission
Execution phase. In the following we describe them in detail.

A. Mission Planning

The mission planning phase is designed as an offline step
preceding mission deployment. In SAR missions, response
time and equipment resources used are two key factors that
determine their efficiency. In general, increasing the number of
robots in collaborative scenarios tends to reduce the operation
time. However, the number of robots available for missions is
finite and their capabilities limited by the battery capacity and
consumption during operation.

A mission planner is thus needed to determine the minimum
number of robots required for a mission, given an area to be
explored and available robot fleet size along with their charac-
teristics (battery size, energy consumption, sensors, mobility,
...), and considering the exploration rate required for the area
and the maximum response time for a successful outcome. In
Section IV we describe the mission planner designed in detail.

B. Mission Execution

During the mission execution phase, the output of the
mission planner is used as a starting point and updated
during execution. In this phase, robots deployed in the field
are expected to operate in coordination using navigation and
exploration strategies to cover the target area. Additionally,
using energy-aware strategies can also significantly increase
the exploration efficiency. In our work, we assume that the
responsibility of ensuring an energy-aware path planning for



Fig. 2: Overview of the Mission Planner.

the designated set of robots, achieved through the orchestration
of their hardware and network resource utilization and task
management, lies within the scope of an edge/cloud-based
task planner. The task planner is designed as a centralised
high-level control entity that performs optimization decisions
by performing hardware/software control, i.e., switch on/off
peripherals and related drivers, as well as, cellular radio
resource allocation. By integrating the capabilities of activating
and deactivating sensors, communication peripherals and off-
loading of computation processes, the task planner provides
field robots with an energy-aware coordinated task plan upon
area exploration. Multiple examples of such task planners can
be found in the related work section. In our work we will
assume the usage of the task planner described in [9].

IV. MISSION PLANNER - UNDER THE HOOD

In Fig. 2 an overview of the Mission Planner is depicted. As
input parameters the following are considered: i) exploration
area size, ii) exploration rate required (ERR), i.e. percentage
of the whole area to be explored, iii) target response time
(TRT), i.e. maximum time envisioned to complete a mission,
and iv) total robot fleet size (TFS). Then, using preloaded first
responders mission information characteristics available (e.g.
robots energy profiles, obstacle density, ...) the mission planner
launches a multi-robot resource planner optimizer to find the
minimum fleet size for a given mission operation. As output,
the Mission Planner provides: i) the number of robots to use,
ii) the exploration area percentage expected, iii) the mission
completion time, and iv) an initial multi-robot path plan to
perform during mission execution.

Algorithm 1 summarizes the Mission Planner implementa-
tion in pseudocode. As it can be observed, the Mission Planner
iteratively evaluates a multi-robot resource planning problem
considering an energy-aware optimization solution. At each
iteration we consider the usage of an increasing number of
robots (with their corresponding energy profile and battery
size) and determine the amount of time required to satisfy
a predetermined ERR within a given TRT. The robot fleet
size is increased by one at each iteration until either the ERR
and TRT requirements are met or the total available fleet size
is reached with no feasible solution. A detailed description

Algorithm 1: Mission Planner
Input : TRT, TFS,ERR, G,ma,b,a′,b′ ;
Procedure:

1 while !solved do
2 UPDATE R ⊂ TFS;
3 SOLVE RP ( T ,R, ERR) ;
4 GET dt, et,a,b, lr,t,a,b∀t ∈ T ;
5 if

∑
dt ≤ TRT OR R == TFS then

6 solved = True;
7 end
8 end

Output : R, dt, lr,t,a,b;

of the RP optimization problem evaluated at each iteration is
described next.

A. Multi-robot Resource Planner Problem (RP)

Hereafter, we present our assumptions, notation and prob-
lem formulation to model our multi-robot Resource Planner
problem, based on the adaptation of the problem formulation
described in [14].

Input variables Let us consider a discrete set of time
instants T = {t1, . . . , t|T |}, and a set of robot devices
R = {r1, . . . , r|R|}. Each robot is equipped with a battery
characterized by a limited capacity Bmax, ∀r ∈ R, whose
charging status br,t varies over time depending on robot
activities and hardware usage. We assume our set of robots
R to be deployed in an area of interest covered by mobile
infrastructure, for 5G connectivity. We define the area of
dimensions A × B meters and discretize its 2D surface into
a grid G = {ga,b,∀(a, b) ∈ (A,B)}, where each element
ga,b ∈ G needs to be explored. We assume the same robot
mobility approach described in [14], where the motion energy
consumption of the robot depends on Pmovea,b,a′,b′ . As men-
tioned before, robots exploit an existing mobile infrastructure
for communications. We also consider PTXa,b as a variable
representing the energy consumed by the robot for transmitting
data, and PRX for receiving data. Finally, we collect the
energy consumption derived by all camera and sensors, as well
as their processing, in the variable PSEN .

Decision variables Let dt binary variable to track the
exploration target rate, which determines whether there are
still areas to explore at a certain time t ∈ T . In fact, to
keep track of the multi-robot exploration, we introduce et,a,b
as a binary variable indicating if the area unit ga,b has been
already explored at time t ∈ T . Additionally, lr,t,a,b is a binary
decision variable to control the robot mobility. Its value gets
positive if the robot r is at position ga,b at time instant t.

Constraints Since our algorithm needs to guarantee that the
ERR is satisfied, we need to enforce that the total explored
area in the last time step is at least the corresponding ERR
(i.e., the percentage of the total area |AB|, now represented
as κ). For this purpose, we include the following constraint:∑

(a,b)∈(A,B)

etf ,a,b ≥ κ|AB|. (1)



We ensure that each robot r ∈ R can only be in one place
in every time instant t ∈ T :∑

(a,b)∈(A,B)

lr,t,a,b = 1 ∀r ∈ R,∀t ∈ T , (2)

And with the following constraint we ensure that robots
only move between neighbouring areas, or stay in the same
position:

lr,t+1,a,b ≤ lr,t,a,b + lr,t,a−1,b + lr,t,a+1,b + lr,t,a,b−1+

lr,t,a,b+1 + lr,t,a−1,b−1 + lr,t,a+1,b+1 + lr,t,a−1,b+1+

lr,t,a+1,b−1 ∀r ∈ R,∀t ∈ T ,∀(a, b) ∈ (A,B). (3)

In order to keep track of the exploration progress among
multiple robots, if any robot r ∈ R visited an area unit ga,b ∈
(A,B) at some earlier time, or if it is exploring such area unit
at the current time t, that area becomes explored at time t and
we update the variable et,a,b accordingly.

et,a,b ≤ et−1,a,b+
∑
r∈R

lr,t,a,b ∀t ∈ T ,∀(a, b) ∈ (A,B), (4)

et,a,b ≥ et−1,a,b ∀t ∈ T ,∀(a, b) ∈ (A,B), (5)

|R|et,a,b ≥
∑
r∈R

lr,t,a,b ∀t ∈ T ,∀(a, b) ∈ (A,B). (6)

In order to update the decision variable dt, according to the
explored area at every time instant, we include the following
constraint: ∑

(a,b)∈(A,B)

et,a,b ≥ κ(1− dt)|AB| ∀t ∈ T . (7)

Finally, and as mentioned before, we assume mobility
consumption to be included in the constant Pmovea,b,a′,b′

and mainly dependent on the robot velocity. For the robot
communications, we assume the robot can always receive
data consuming PRX . During data transmission, the consumed
power depends on the distance to the base station (according to
PTX,a,b). If a robot has never been in an area unit, its sensors,
camera, processing units and transmission elements should be
active. However, in order to reduce the energy consumption,
if the robot is in an already explored area, we consider the
possibility to turn them off for the purpose of saving energy.
Taking this into account, our algorithm updates the expected
battery level br,t+1 by means of the following equation:

br,t+1 = br,t − PRX−∑
(a,b)∈(A,B)

∑
(a′,b′)∈(A,B)

lr,t,a,b × lr,t+1,a′,b′ × Pmovea,b,a′,b′

−PSEN ×
∑

(a,b)∈(A,B)

(1− et,a,b)× lr,t+1,a,b− (8)

∑
(a,b)∈(A,B)

PTX,a,b × (1− et,a,b)× lr,t+1,a,b ∀t ∈ T ,∀r ∈ R.

(a) Wheeled robot (b) Quadruped robot

Fig. 3: Robots evaluated in the SAR Framework

Objective To increase the chances of detecting and assisting
a target person in an unknown area it is necessary to minimize
the time required to explore the target area:

min
∑
t∈T

dt (9)

To sum up, the overall problem formulation of our multi-
robot resource planner can be summarized as follows:
Problem RP (T ,R, κ) :

min
∑
t∈T

dt

subject to:
(1)(2)(3)(4)(5)(6)(7)(8);

V. WHEELED VS QUADRUPED ROBOTS
ENERGY PROFILING

A key aspect to be taken into account for achieving an
accurate mission plan is the energy profile of the robots. For
this reason, in this section we focus on analyzing the energy
profile of two of the most commonly robot types used in
SAR operations: wheeled and quadruped robots. Fig. 3 depicts
examples of representative wheeled [17] and quadruped robots
[18].

Terrain-adaptability, motion speed and task-related energy
consumption are key factors to consider when deciding on
the adoption of mobile robots in real-world scenarios which
should be carefully evaluated upon mission planning. While
for cellular-enabled wheeled robots detailed energy profiling
results exist, e.g. [9], for quadruped robots no detailed energy
profiling was found in the literature. Thus, in order to have a
detailed model for our SAR framework both of wheeled and
quadruped cellular-enabled robots we acquired a Unitree GO1
EDU robot and performed our own profiling. The results are
summarized next.

A. Unitree GO1 Energy Profiling

The Unitree GO1 platform is equipped with a Raspberry
Pi serving as the main CPU, supplemented by an array of
three additional NVIDIA Jetson Nano units. Communication
capabilities are facilitated through WiFi, Bluetooth, and a
4G QUECTEL chipset. The sensor suite of the robot com-
prises 5 pairs of cameras and 3 ultrasound sensors, with an
additional feature being the inclusion of a 3D LiDAR that



can be mounted on top the robot. Furthermore, Simultaneous
Localization and Mapping (SLAM) using the LiDAR, as
well as human recognition through the camera feed can be
performed. Notably, the Raspberry Pi perpetually powers the
WiFi hotspot, while the cameras and ultrasound sensors rely on
the Nano processors to which they are connected. Bluetooth,
in contrast, remains in a dormant state until a new signal is
received, rendering its power consumption negligible.

Table I presents a comprehensive breakdown of the energy
consumption associated with the Unitree GO1 EDU robot.
Each row shows the results obtained when analysing the
power consumption of independent robot components and
motions. Tests have been performed averaging power con-
sumption during a complete discharge of the 4500 (mAh)
battery. For these measurements, unitree legged sdk and uni-
tree ros to real ROS packages have been used to communi-
cate through User Datagram Protocol (UDP) to the controller,
which publishes the robot high state data, including the battery
state.

The table first shows the results upon evaluating the con-
sumption when enabling/disabling non-critical robot compo-
nents (i.e., cellular communications, cameras, or processors).
Power consumption has been determined by comparing it to
a baseline of an idle standing robot state. As can be seen,
the main consumer is the use of SLAM techniques with a
3D LiDAR mounted on top of the robot. Similar consumption
is observed when human recognition features (which uses the
NVIDIA-AI-IOT trt pose) are combined with the cameras. The
second section of the table denotes the results of the robot
mobility tests. We have considered two possible idle states:
up (standing) and down (laying). The results show that in a
standing position the robot consumes four times more energy
than laying. Considering that it takes about 1 second for the
robot to transition from up to down, and viceversa, the idle
pose transition results denote that the robot can save energy
by laying down in idle times longer than 2.87 seconds. Four
additional tests (driving straight at three different speeds and
circling) have been performed moving the robot. The results,
which are exclusively related to robot motion, denote that
energy consumption tends to increase proportionally to the
robot speed.

The data sets collected during the energy profiling measure-
ments will be made publicly available upon acceptance.

B. Wheeled vs Quadruped Energy Profiles

In Table II we summarize the energy profiling of both types
of robots taking the values from [9] for the wheeled one
and the ones of our own Unitree GO1 EDU profiling for a
quadruped one. We compare the power consumption related
to cellular communications for the reception and transmission
of data, considering that both robots use similar technologies.
As for sensing, consumption is related to the use of cameras,
LiDAR sensor, SLAM processes and the processor. Robot
inactivity is defined as Idle state, and it is the minimum
consumption robots have when performing no movement, nor
use any particular hardware nor perform any action. As it can

TABLE I: Power consumption breakdown of the GO1 robot

Consumption Element Avg. Consumption (W)

Components

4G Peripheral 15.77
Cameras and Nano Proc. 19.25
Human Recognition 29.38
3D LiDAR and SLAM 56.84

Mobility

Idle Down 21.62
Flex Down 75.79
Flex Up 93.14
Idle Up 80.33
Walking Circles 0.76 rad/s 73.86
Walking 0.5 m/s 53.26
Walking 1 m/s 108.86
Walking 2 m/s 211.22

TABLE II: Power consumption comparison

Avg. Consumption (W) Consumption rate (%)
Quadruped Wheeled Quadruped Wheeled

Cellular Reception 15.77 4 5.30% 13.97%
Cellular Transmission 16.72 4.95 5.61% 17.28%
Camera, LiDAR, Processor 76.09 12 25.55% 41.90%
Idle Up or Idle 80.33 0.29 26.98% 1.01%
Motion 1 m/s 108.86 7.40 36.56% 25.84%

Total: 297.77 28.64

be observed, the quadruped robot has an overall higher power
consumption than the wheeled robot. On the one hand, this is
due to the quadruped robot having more consuming hardware
components and processes than the wheeled robot. On the
other hand, quadruped robots allow for more payload and are
designed to explore more unstructured areas. In fact, upon
evaluating the percentages of consumption rate, it is observed
that it also consumes when standing in idle state. At the same
time, wheeled robots normally have lower battery sizes than
quadruped ones.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the cellular-
enabled collaborative robotics SAR framework designed with a
special focus on the Mission Planner building block described
in Section IV and considering both wheeled and quadruped
robots with the energy profiles summarized in Section V.

A. Evaluation Scenario Setup

For the performance evaluation scenario setup we will
consider two different exploration area sizes (50x50 m2 and
500x500 m2) to cover both scenarios where the battery plays
a negligible and a major role. Moreover, for the wheeled and
quadruped robots we consider a battery maximum capacity of
72 (kJ) and 350 (kJ), respectively, based on the specifications
of each robot. Finally, as a first approximation to clearly
evaluate the trade-offs involved in the optimization problem,
no obstacles are considered in the deployment scenarios to
observe the impact of different fleet sizes in ideal conditions.

B. Mission Planning Evaluation

In Fig. 4 we compare the performance of wheeled versus
quadruped robot fleets in a 50x50 m2 area moving both at the
same speed of 1 m/s. We consider the total fleet size to be 10
robots, an exploration rate required of 75% of the total area



(a) Wheeled robot (b) Quadruped robot

Fig. 4: Percentage of Explored Area per Time Epoch for a 50x50 m2 scenario. Wheeled versus Quadruped Robots.

(a) Wheeled robot (b) Quadruped robot

Fig. 5: Percentage of Explored Area per Time Epoch for a 500x500 m2 scenario. Wheeled versus Quadruped Robots.

and a target response time up to 90 seconds. Note that each
epoch is equivalent to 10 seconds in our experiments.

The results obtained with both type of robots are similar,
due to the fact that the battery capacity is sufficient to cover the
totality of the area at the given 1 m/s speed. In this scenario the
Mission Planner outputs a minimal fleet size of three robots
to satisfy target conditions, for both types of robots.

In Fig. 5 the Mission Planner has been used to evaluate the
impact of a ten times larger area (500x500 m2). As in the
previous case, we consider the total fleet size to be 10 robots,
an exploration rate required of 75% of the total area, a target
response time up to 180 epochs given the larger size of the
scenario and moving speed of 1 m/s.

The results in this case differ between the wheeled and
quadruped robots as expected since in this case the differ-
ences in the energy consumption between robot types become
visible. Despite the fact that the larger energy consumption
required by quadruped robots is compensated with a larger
battery size, the impact it has in relation to its battery capacity
is much greater than in the wheeled robot case. Therefore, the
results of the Mission Planner indicate that while one wheeled
robot would be sufficient to meet the mission requirements,
two quadruped robots would be needed in the same conditions.

VII. CONCLUSIONS AND FUTURE WORKS

In mission-critical operations, the role of cellular-enabled
collaborative robot fleets in augmenting the search-and-rescue
capabilities of first responders is crucial. In this paper, we
proposed a novel SAR framework for cellular-enabled collab-
orative robotics mission planning that, taking as input infor-
mation readily available (exploration area, fleet size, energy
profile, exploration rate and target response time), allows first
responders to take informed decisions about the number of
robots needed to successfully complete a mission. Moreover,
our results illustrated the trade-off involved when considering
different types of robots (wheeled vs quadruped) with respect
to the number of robots, explored area and response time.

Future work will consider expanding our SAR framework
to further consider larger scale scenarios (in terms of bigger
areas, number and heteroegenity of robots, terrain diversity,
obstacles, ...) and input parameters available (e.g. detailed
surface information, higher granularity robot energy profiling,
higher control granularity, ...). In such cases the problem com-
plexity might get increasinlgy daunting but if mathematical
and/or machine learning solutions can be applied to make them
feasible, better informed decisions will be enabled.
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